Стройка и ремонт - Информационный портал

Число тьюринга. Машина Тьюринга: описание и примеры машин Тьюринга. Машина Тьюринга, работающая на полубесконечной ленте

Машина Тьюринга - одно из самых интригующих и захватывающих интеллектуальных открытий 20-го века. Это простая и полезная абстрактная модель вычислений (компьютерных и цифровых), которая является достаточно общей для воплощения любой компьютерной задачи. Благодаря простому описанию и проведению математического анализа она образует фундамент теоретической информатики. Это исследование привело к более глубокому познанию цифровых компьютеров и исчислений, включая понимание того, что существуют некоторые вычислительные проблемы, не решаемые на общих пользовательских ЭВМ.

Что это и кто создал

Алан Тьюринг стремился описать наиболее примитивную модель механического устройства, которая имела бы те же основные возможности, что и компьютер. Тьюринг впервые описал машину в 1936 году в статье "О вычислимых числах с приложением к проблеме разрешимости", которая появилась в Трудах Лондонского математического общества.

Машина Тьюринга является вычислительным устройством, состоящим из головки чтения/записи (или «сканера») с бумажной лентой, проходящей через него. Лента разделена на квадраты, каждый из которых несет одиночный символ - "0" или "1". Назначение механизма состоит в том, что он выступает и как средство для входа и выхода, и как рабочая память для хранения результатов промежуточных этапов вычислений.

Из чего состоит устройство

Каждая такая машина состоит из двух составляющих:

  1. Неограниченная лента. Она является бесконечной в обе стороны и разделена на ячейки.
  2. Автомат - управляемая программа, головка-сканер для считывания и записи данных. Она может находиться в каждый момент в одном из множества состояний.

Каждая машина связывает два конечных ряда данных: алфавит входящих символов A = {a0, a1, ..., am} и алфавит состояний Q = {q0, q1, ..., qp}. Состояние q0 называют пассивным. Считается, что устройство заканчивает свою работу, когда попадает именно на него. Состояние q1 называют начальным - машина начинает свои вычисления, находясь на старте в нем. Входное слово располагается на ленте по одной букве подряд в каждой позиции. С обеих сторон от него располагаются только пустые ячейки.

Как работает механизм

Машина Тьюринга имеет принципиальное отличие от вычислительных устройств - ее запоминающее приспособление имеет бесконечную ленту, тогда как у цифровых аппаратов такое устройство имеет полосу определенной длины. Каждый класс заданий решает только одна построенная машина Тьюринга. Задачи иного вида предполагают написание нового алгоритма.

Управляющее устройство, находясь в одном состоянии, может передвигаться в любую сторону по ленте. Оно записывает в ячейки и считывает с них символы конечного алфавита. В процессе перемещения выделяется пустой элемент, который заполняет позиции, не содержащие входные данные. Алгоритм для машины Тьюринга определяет правила перехода для управляющего устройства. Они задают головке записи-чтения такие параметры: запись в ячейку нового символа, переход в новое состояние, перемещение влево или вправо по ленте.

Свойства механизма

Машина Тьюринга, как и другие вычислительные системы, имеет присущие ей особенности, и они сходны со свойствами алгоритмов:

  1. Дискретность. Цифровая машина переходит к следующему шагу n+1 только после того, как будет выполнен предыдущий. Каждый выполненный этап назначает, каким будет n+1.
  2. Понятность. Устройство выполняет только одно действие для одной же ячейки. Оно вписывает символ из алфавита и делает одно движение: влево или вправо.
  3. Детерминированность. Каждой позиции в механизме соответствует единственный вариант выполнения заданной схемы, и на каждом этапе действия и последовательность их выполнения однозначны.
  4. Результативность. Точный результат для каждого этапа определяет машина Тьюринга. Программа выполняет алгоритм и за конечное число шагов переходит в состояние q0.
  5. Массовость. Каждое устройство определено над допустимыми словами, входящими в алфавит.

Функции машины Тьюринга

В решении алгоритмов часто требуется реализация функции. В зависимости от возможности написания цепочки для вычисления, функцию называют алгоритмически разрешимой или неразрешимой. В качестве множества натуральных или рациональных чисел, слов в конечном алфавите N для машины рассматривается последовательность множества В - слова в рамках двоичного кодового алфавита В={0.1}. Также в результат вычисления учитывается «неопределенное» значение, которое возникает при «зависании» алгоритма. Для реализации функции важно наличие формального языка в конечном алфавите и решаемость задачи распознавания корректных описаний.

Программа для устройства

Программы для механизма Тьюринга оформляются таблицами, в которых первые строка и столбец содержат символы внешнего алфавита и значения возможных внутренних состояний автомата - внутренний алфавит. Табличные данные являются командами, которые воспринимает машина Тьюринга. Решение задач происходит таким образом: буква, считываемая головкой в ячейке, над которой она в данный момент находится, и внутреннее состояние головки автомата обусловливают, какую из команд необходимо выполнять. Конкретно такая команда находится на пересечении символов внешнего алфавита и внутреннего, находящихся в таблице.

Составляющие для вычислений

Чтобы построить машину Тьюринга для решения одной определенной задачи, необходимо определить для нее следующие параметры.

Внешний алфавит. Это некоторое конечное множество символов, обозначающихся знаком А, составляющие элементы которого именуются буквами. Один из них - а0 - должен быть пустым. Для примера, алфавит устройства Тьюринга, работающего с двоичными числами, выглядит так: A = {0, 1, а0}.

Непрерывная цепочка букв-символов, записываемая на ленту, именуется словом.

Автоматом называется устройство, которое работает без вмешательства людей. В машине Тьюринга он имеет для решения задач несколько различных состояний и при определенно возникающих условиях перемещается из одного положения в другое. Совокупность таких состояний каретки есть внутренний алфавит. Он имеет буквенное обозначение вида Q={q1, q2...}. Одно из таких положений - q1 - должно являться начальным, то есть тем, что запускает программу. Еще одним необходимым элементом является состояние q0, которое является конечным, то есть тем, что завершает программу и переводит устройство в позицию остановки.

Таблица переходов. Эта составляющая представляет собой алгоритм поведения каретки устройства в зависимости от того, каковы в данный момент состояние автомата и значение считываемого символа.

Алгоритм для автомата

Кареткой устройства Тьюринга во время работы управляет программа, которая во время каждого шага выполняет последовательность следующих действий:

  1. Запись символа внешнего алфавита в позицию, в том числе и пустого, осуществляя замену находившегося в ней, в том числе и пустого, элемента.
  2. Перемещение на один шаг-ячейку влево или же вправо.
  3. Изменение своего внутреннего состояния.

Таким образом, при написании программ для каждой пары символов либо положений необходимо точно описать три параметра: a i - элемент из выбранного алфавита A, направление сдвига каретки ("←” влево, "→” вправо, "точка” — отсутствие перемещения) и q k - новое состояние устройства. К примеру, команда 1 "←” q 2 имеет значение "заместить символ на 1, сдвинуть головку каретки влево на один шаг-ячейку и сделать переход в состояние q 2 ”.

Машина Тьюринга: примеры

Пример 1. Дана задача построить алгоритм, прибавляющий единицу к последней цифре заданного числа, расположенного на ленте. Входные данные - слово - цифры целого десятичного числа, записанные в последовательные ячейки на ленту. В первоначальный момент устройство располагается напротив самого правого символа - цифры числа.

Решение. В случае если последняя цифра равняется 9, то ее нужно заменить на 0 и затем прибавить единицу к предшествующему символу. Программа в этом случае для данного устройства Тьюринга может быть написана так:

Здесь q 1 — состояние изменения цифры, q 0 — остановка. Если в q 1 автомат фиксирует элемент из ряда 0..8, то он замещает ее на один из 1..9 соответственно и затем переключается в состояние q 0 , то есть устройство останавливается. В случае если же каретка фиксирует число 9, то замещает ее на 0, затем перемещается влево, останавливаясь в состоянии q 1 . Такое движение продолжается до того момента, пока устройство не зафиксирует цифру, меньшую 9. Если все символы оказались равными 9, они замещаются нулями, на месте старшего элемента запишется 0, каретка переместится влево и запишет 1 в пустую клетку. Следующим шагом будет переход в состояние q 0 - остановка.

Пример 2. Дан ряд из символов, обозначающих открывающие и закрывающие скобки. Требуется построить устройство Тьюринга, которое выполняло бы удаление пары взаимных скобок, то есть элементов, расположенных подряд - “()”. Например, исходные данные: “) (() (()”, ответ должен быть таким: “) . . . ((”. Решение: механизм, находясь в q 1 , анализирует крайний слева элемент в строке.

Состояние q 1: если встречен символ “(”, то совершить сдвиг вправо и переход в положение q 2 ; если определен “a 0 ”, то остановка.

Состояние q 2: проводится анализ скобки “(” на наличие парности, в случае совпадения должно получиться “)”. Если элемент парный, то сделать возврат каретки влево и перейти в q 3 .

Состояние q 3: осуществить удаление сначала символа “(”, а затем “)” и перейти в q 1 .

Один из важнейших вопросов современной информатики — существует ли формальный исполнитель, с помощью которого можно имитировать любого формального исполнителя. ответ на этот вопрос был получен почти одновременно двумя выдающимися учеными — А. Тьюрингом и Э. Постом. Предложенные ими исполнители отличались друг от друга, но оказалось, что они могут имитировать друг друга, а главное — имитировать работу любого формального исполнителя.

Что такое формальный исполнитель? Что значит — один формальный исполнитель имитирует работу другого формального исполнителя? Если Вы играли в компьютерные игры — на экране объекты беспрекословно подчиняются командам играющего. Каждый объект обладает набором допустимых команд. В то же время компьютер сам является исполнителем, причем не виртуальным, а реальным. Вот и получается, что один формальный исполнитель имитирует работу другого формального исполнителя.

Рассмотрим работу Машины Тьюринга.

Машина Тьюринга представляет собой бесконечную ленту, поделенную на ячейки, и каретку (считывающе-печатающее устройство), которая движется вдоль ленты.

Таким образом Машина Тьюринга формально описывается набором двух алфавитов:

A={a1, a2, a3, …, an} — внешний алфавит, служит для записи исходных данных

Q={q1, q2, q3,…, qm} — внутренний алфавит, описывает набор состояний считывающе-печатного устройства.

Каждая ячейка ленты может содержать символ из внешнего алфавита A = {a0,a1,…,an} (В нашем случае A={0, 1})

Допустимые действия Машины Тьюринга таковы:

1) записать какой-либо символ внешнего алфавита в ячейку ленты (символ, бывший там до того, затирается)

2) сместиться в соседнюю ячейку

3) сменить состояние на одно из обозначенных символом внутреннего алфавита Q

Машина Тьюринга — это автомат, который управляется таблицей.

Строки в таблице соответствуют символам выбранного алфавита A, а столбцы — состояниям автомата Q = {q0,q1,…,qm}. В начале работы машина Тьюринга находится в состоянии q1. Состояние q0 — это конечное состояние, попав в него, автомат заканчивает работу.

В каждой клетке таблицы, соответствующей некоторому символу ai и некоторому состоянию qj, находится команда, состоящая из трех частей
· символ из алфавита A
· направление перемещения: «>» (вправо), «<» (влево) или «.» (на месте)
· новое состояние автомата

В приведенной выше таблице алфавит A ={0, 1, _} (содержит 3 символа), а внутренний алфавит Q={q1, q2, q3, q4, q0}, q0 — состояние, заставляющее каретку остановиться.

Рассмотрим несколько задач решением. Скачать машину Тьюринга Вы можете на сайте в разделе .

Задача 1. Пусть A={0, 1, _}. На ленте в ячейках находятся символы из алфавита в следующем порядке 0011011. каретка находится над первым символом. Необходимо составить программу, которая заменит 0 на 1, 1 на 0 и вернет каретку в первоначальное положение.

Теперь определимся с состояниями каретки. Я называю их — «желания каретки что-то сделать».

q1) Каретка должна пойти вправо: если видит 0 меняет его на 1 и остается в состоянии q1, если видит 1 — меняет его на 0 и остается в состоянии q1, если видит _ — ворачивается назад на 1 ячейку «желает что-то другое», т.е переходит в состояние q2. Запишем наши рассуждения в таблицу исполнителя. Синтаксис смотрите в справке к программе)

q2) Теперь опишем «желание каретки» q2. Мы должны вернуться в первоначальное положение. Для этого: если видим 1 оставляем ее и остаемся в состоянии q2 (с тем же желанием дойти до конца ряда символов); если видим 0 — оставляем его и продолжаем двигаться влево в состоянии q2; видим _ — сдвигается вправо на 1 ячейку. Вот вы оказались там, где требуется в условии задачи. переходим в состояние q0.

Посмотреть работу программы можно на видео:

Задача 2. Дано: конечная последовательность 0 и 1 (001101011101). Необходимо выписать их после данной последовательности, через пустую ячейку, а в данной последовательности заменить их на 0. Например:

Из 001101011101 получим 000000000000 1111111.

Как видите, семь единиц записались после данной последовательности, а на их местах стоят нолики.

Приступим к рассуждениям. Определим, какие состояния необходимы каретке и сколько.

q1) увидел 1 — исправь на нолик и перейди в другое состояние q2 (новое состояние вводится, чтобы каретка не поменяла на нули все единицы за один проход)

q2) ничего не менять, двигаться к концу последовательности

q3) как только каретка увидела пустую ячейку, она делает шаг вправо и рисует единичку, если она видит единичку — то движется дальше, чтобы подписать символ в конце. Как только нарисовал единицу, переходим в состояние q4

q4) проходим по написанным единицам, ничего не меняя. Как только доходим до пустой ячейки, разделяющей последовательность от единиц, переходим с новое состояние q5

q5) в этом состоянии идем начало последовательности, ничего не меняя. Доходим до пустой ячейки, разворачиваемся и переходим в состояние q1

Состояние q0 каретка примет в том случае, когда она пройдет в состоянии q1 до конца данной последовательности и встретит пустую ячейку.

Получим такую программу:

Работу Машины Тьюринга можете посмотреть на видео ниже.

В первой половине XX века, когда были изобретены первые вычислительные машины. Однако наряду с физически осязаемыми машинами появлялись и машины-концепции. Одной из них была «машина Тьюринга» - абстрактное вычислительное устройство, придуманное в 1936 году Аланом Тьюрингом - учёным, которого считают одним из основоположников информатики.

Его кругозор распространялся от квантовой теории и принципа относительности до психологии и неврологии. А в качестве способа познания и передачи своих знаний Тьюринг использовал аппарат математики и логики. Он находил решения, казалось бы, нерешаемых задач, но был сильнее всего увлечен идеей «Универсальной машины», способной вычислить всё, что в принципе вычислимо.

Детство, образование, увлечения

Родители Алана жили в индийском городе Чхатрапур. Отец - Юлиус Мэтисон Тьюринг представитель старого шотландского аристократического рода, работал в Имперской государственной службе. Мать - Сара Этель (урожденная Стони), была родом из Ирландии, из протестантской семьи англо-ирландского дворянства. Когда она ждала ребёнка, супруги решили переехать в Англию, чтобы он рос и воспитывался в Лондоне.

Там Алан Тьюринг и родился 23 июня 1912 года. У него был старший брат Джон. Государственная служба Юлиуса Тьюринга продолжалась и родителям Алана приходилось часто путешествовать между Гастингсом и Индией, оставляя двоих своих сыновей на попечение отставной армейской пары. Признаки гениальности проявлялись у Тьюринга с раннего детства.

В детстве Алан и его старший брат Джон довольно редко видели своих родителей - их отец до 1926 года служил в Индии; дети оставались в Англии и жили на попечении в частных домах, получая строгое английское воспитание, соответствующее их положению на социальной лестнице. В рамках такого воспитания изучение основ естественных наук фактически не предусматривалось.

Маленький Алан обладал очень пытливым умом. Самостоятельно научившись читать в возрасте 6 лет, он просил у своих воспитателей разрешения читать научно-популярные книги.

В 11 лет он ставил вполне грамотные химические опыты, пытаясь извлечь йод из водорослей. Все это доставляло огромное беспокойство его матери, которая боялась, что увлечения сына, идущие вразрез с традиционным воспитанием, помешают ему поступить в Public School (английское закрытое частное учебное заведение для мальчиков, учеба в котором была обязательна для детей аристократов). Но её опасения оказались напрасны: Алан смог поступить в престижную Шербонскую школу (Sherborne Public School).

В шесть лет Алан Тьюринг пошёл в школу святого Михаила в Гастингсе, директор которой сразу отметила его одарённость. В 1926 году, в возрасте 13 лет, Тьюринг пошёл в известную частную школу Шерборн в городе Шерборн графства Дорсет. Его первый день в школе совпал со Всеобщей забастовкой 1926 года. Поэтому Тьюрингу пришлось преодолеть расстояние около 100 км от Саутгемптона до Шерборна на велосипеде, по пути он переночевал в гостинице.

Увлечение Тьюринга математикой не нашло особой поддержки среди учителей Шерборнской школы, где уделяли больше внимания гуманитарным наукам. Директор школы писал родителям: «Я надеюсь, что он не будет пытаться усидеть на двух стульях разом. Если он намеревается остаться в частной школе, то он должен стремиться к получению «образования». Если же он собирается быть исключительно «научным специалистом», то частная школа для него - пустая трата времени».

О школьных успехах Алана красноречиво свидетельствует классный журнал, в котором можно найти, например, следующее

Я могу смотреть сквозь пальцы на его сочинения, хотя ничего ужаснее в жизни своей не видывал, я пытаюсь терпеть его непоколебимую небрежность и непристойное прилежание; но вынести потрясающую глупость его высказываний во время вполне здравой дискуссии по Новому Завету я, все же, не могу.

Тем не менее, в областях, интересовавших его, Тьюринг проявлял незаурядные способности.

В 1928 году, в возрасте 16 лет, Тьюринг ознакомился с работой Эйнштейна, в которой ему удалось разобраться до такой степени, что он смог догадаться из текста о сомнениях Эйнштейна относительно выполнимости Законов Ньютона, которые не были высказаны в статье в явном виде.

Университет

Из-за нелюбви к гуманитарным наукам Тьюринг недобрал баллов на экзамене и поэтому после школы поступил в Королевский колледж Кембриджа, хотя намеревался пойти в Тринити-колледж. В Королевском колледже Тьюринг учился с 1931 по 1934 год под руководством известного математика Годфри Харолда Харди.

Кембриджский университет, обладавший особыми привилегиями, дарованными английскими монархами, издавна славился либеральными традициями, и в его стенах всегда царил дух свободомыслия. Здесь Тьюринг обретает – пожалуй, впервые – свой настоящий дом, где он смог полностью отдаться науке.

Главное место в жизни заняло увлечённое изучение столь интересующих его наук – математики и квантовой физики. Те годы были периодом бурного становления квантовой физики, и Тьюринг в студенческие годы знакомится с самыми последними работами в этой области. Большое впечатление производит на него книга Джона фон Неймана «Математические основы квантовой механики», в которой он находит ответы на многие давно интересующие его вопросы.

Тогда Тьюринг, наверное, и не предполагал, что через несколько лет фон Нейман предложит ему место в Принстоне – одном из самых известных университетов США. Ещё позже фон Нейман, так же как и Тьюринг, будет назван «отцом информатики». Но тогда, в начале 30-х годов ХХ века, научные интересы обоих будущих выдающихся учёных были далеки от вычислительных машин – и Тьюринг, и фон Нейман занимаются в основном задачами «чистой» математики.

Тьюринг происходил из аристократической семьи, но никогда не был «эстетом»: кембриджские политические и литературные кружки были чужды ему. Он предпочитал заниматься своей любимой математикой, а в свободное время ставить химические опыты, решать шахматные головоломки.

Ставя химические опыты, он играл в особую игру «Необитаемый остров», изобретенную им самим. Цель игры заключалась в том, чтобы получать различные «полезные» химические вещества из «подручных средств» – стирального порошка, средства для мытья посуды, чернил и тому подобной «домашней химии».

Он также находил отдых в интенсивных занятиях спортом – греблей и бегом. Марафонский бег останется его поистине страстным увлечением до конца жизни.

Тьюринг блестяще заканчивает четырёхлетний курс обучения. Одна из его работ, посвященная теории вероятностей, удостаивается специальной премии, его избирают в научное общество Королевского колледжа. В 1935 году Тьюринг публикует работу «Эквивалентность левой и правой почти-периодичности», в которой он упрощает одну идею фон Неймана в теории непрерывных групп – фундаментальной области современной математики. Казалось, его ждет успешная карьера слегка эксцентричного кембриджского преподавателя, работающего в области «чистой» математики.

Однако Тьюринг никогда не удерживался в каких-либо «рамках». Никто не мог предвидеть, какая экзотическая проблема неожиданно увлечет его, и какой математически неординарный способ ее решения ему удастся придумать.

Кроме того, в Кембридже Алан посещал лекции Виттенштейна Людвига. Виттенштейн утверждал теорию о несостоятельности математики. По его словам математика не ищет истину, но сама создаёт её. Алан был с этим не согласен и много спорил с Людвигом. Тьюринг выступал за «формализм» - математическое философское течение, которое не требовало точного перевода слов и ограничивалось примерным смыслом. А Людвиг искал абсолютной точности.

Во время обучения в колледже Алан Тьюринг изучал основы криптографии – то есть расшифровки данных. Это пригодилось ему во время Второй Мировой войны, когда учёный работал над расшифровкой немецких посланий.

Машина Тьюринга

В 1928 году немецкий математик Давид Гильберт привлек внимание мировой общественности к проблеме разрешения (Entscheidungsproblem). В своей работе «On Computable Numbers, with an Application to the Entscheidungsproblem», опубликованной 12 ноября 1936 года. Тьюринг переформулировал теорему Гёделя о неполноте, заменив универсальный формальный арифметический язык Гёделя на простые гипотетические устройства, которые впоследствии стали известны как машины Тьюринга.

Он доказал, что подобная машина была бы способна произвести любые математические вычисления, представимые в виде алгоритма. Далее Тьюринг показал, что не существует решения Entscheidungsproblem, сперва доказав, что Проблема остановки для машины Тьюринга неразрешима: в общем случае невозможно алгоритмически определить, остановится ли когда-нибудь данная машина Тьюринга.

Хотя доказательство Тьюринга было обнародовано в скором времени после эквивалентного доказательства Алонзо Чёрча, в котором использовались Лямбда-исчисления, сам Тьюринг был с ним не знаком. Подход Алана Тьюринга принято считать более доступным и интуитивным. Идея «Универсальной Машины», способной выполнять функции любой другой машины, или другими словами, вычислить всё, что можно, в принципе, вычислить, была крайне оригинальной. Фон Нейман признал, что концепция современного компьютера основана на этой работе Алана Тьюринга. Машины Тьюринга по-прежнему являются основным объектом исследования теории алгоритмов.

На вопрос : «Что такое машина Тьюринга и какое отношение она имеет к программированию?» один из пользователей Toster ответил так:

В первую очередь - это формальное определение алгоритма. Задача считается алгоритмически разрешимой тогда и только тогда, когда её решение можно запрограммировать на машине Тьюринга (или каким-нибудь другим эквивалентным способом). Это определение даёт, например, возможность предъявить алгоритмически неразрешимые задачи. Позволяет ввести понятие «Тьюринг-полного» языка - если на языке можно реализовать машину Тьюринга, то на нём можно написать любой алгоритм (препроцессор языка С таким не является, а C# - является).

В общем, МТ - способ определить некоторый класс алгоритмов:

Некоторые задачи можно решить конечным автоматом;
- для некоторых потребуется конечный автомат со стековой памятью;
- для других достаточно машины Тьюринга;
- для остальных требуется божественное откровение или другие неалгоритмизируемые методы.


С сентября 1936 года по июль 1938 Тьюринг работал под руководством Чёрча в Принстоне. Кроме занятий математикой, учёный изучал криптографию, а также конструировал электромеханический бинарный умножитель.

В июне 1938 года Тьюринг защитил докторскую диссертацию «Логические системы, основанные на ординалах», в которой была представлена идея сведения по Тьюрингу, заключающаяся в объединении машины Тьюринга с оракулом. Это позволяет исследовать проблемы, которые невозможно решить с помощью лишь машины Тьюринга.

Криптоанализ

Во время Второй мировой войны Алан Тьюринг принимал активное участие во взломе немецких шифров в Блетчли-парке. Историк и ветеран Блетчли-парка Эйза Бригс однажды сказал:

«Блетчли-парку был нужен исключительный талант, исключительная гениальность, и гениальность Тьюринга была именно такой».

С сентября 1938 года Тьюринг работал на полставки в GCHQ - британской организации, специализировавшейся на взломе шифров. Совместно с Дилли Ноксом он занимался криптоанализом «Энигмы». Вскоре после встречи в Варшаве в июле 1939 года, на которой польское Бюро шифров предоставило Великобритании и Франции подробные сведения о соединениях в роторах «Энигмы» и методе расшифровки сообщений, Тьюринг и Нокс начали свою работу над более основательным способом решения проблемы.

Польский метод основывался на недоработках индикаторной процедуры, которые немцы исправили к маю 1940 года. Подход Тьюринга был более общим и основан на методе перебора последовательностей исходного текста, для которого он разработал начальную функциональную спецификацию Bombe.

Машина, созданная на основе этой спецификации, искала возможные настройки, использованные для шифрования сообщений (порядок роторов, положение ротора, соединения коммутационной панели), опираясь на известный открытый текст. Для каждой возможной настройки ротора (у которого было 10 ^ 19 состояний или 10 ^ 22 в модификации, использовавшейся на подводных лодках) машина производила ряд логических предположений, основываясь на открытом тексте (его содержании и структуре).

Далее машина определяла противоречие, отбрасывала набор параметров и переходила к следующему. Таким образом, бо́льшая часть возможных наборов отсеивалась и для тщательного анализа оставалось всего несколько вариантов.
Первая машина была запущена в эксплуатацию 18 марта 1940 года. Перебор ключей выполнялся за счёт вращения механических барабанов, сопровождавшегося звуком, похожим на тиканье часов.

Спецификация для «Бомбы» была только первым из пяти важнейших достижений Тьюринга в области военного криптоанализа.

Учёный также определил индикаторную процедуру ВМФ Германии; разработал более эффективный способ использования Bombe, основанный на статистическом анализе и названный «Банбурисмусом»; метод определения параметров колёс машины Лоренца, названный «Тьюринжерией»; ближе к концу войны Тьюринг разработал портативный шифратор речи Delilah.

Статистический подход к оптимизации исследований различных вероятностей в процессе разгадывания шифров, который использовал Тьюринг, был новым словом в науке. Тьюринг написал две работы: «Доклад о применимости вероятностного подхода в криптоанализе» и «Документ о статистике и повторениях», которые представляли для GCCS, а позже и для GCHQ (англ. Government Communications Headquarters) такую ценность, что не были предоставлены национальному архиву вплоть до апреля 2012 года, незадолго до празднования ста лет со дня рождения учёного. Один из сотрудников GCHQ заявил, что этот факт говорит о беспрецедентной важности этих работ.

Тьюринг занимался также разработкой шифров для переписки Черчилля и Рузвельта, проведя период с ноября 1942 года по март 1943 года в США.

В 1945 году Тьюринг был награждён орденом Британской империи королём Георгом VI за свою военную службу, но этот факт оставался в секрете многие годы.

Послевоенные годы

После того как фон Нейман в США предложил план создания компьютера EDVAC, аналогичные работы были развернуты в Великобритании в Национальной физической лаборатории, где Тьюринг проработал с 1945 года. Ученый предложил весьма амбициозный проект АСЕ (Automatic Computing Engine – Автоматическая Вычислительная Машина), который, однако, так и не был реализован.

Несмотря на то, что постройка ACE была вполне осуществима, секретность, окружавшая Блэтчли-парк, привела к задержкам в начале работ, что разочаровало Тьюринга.

1947–1948 академический год Тьюринг провел в Кембридже. Пока Алан Тьюринг пребывал в Кембридже, Pilot ACE был построен в его отсутствие.


Franklin ACE 1200

Он выполнил свою первую программу 10 мая 1950 года. Хотя полная версия ACE никогда не была построена, некоторые компьютеры имели с ним много общего, к примеру, DEUCE и Bendix G-15.

В мае 1948 года получил предложение занять пост преподавателя и заместителя директора вычислительной лаборатории Манчестерского университета, занявшего к этому времени лидирующие позиции в разработке вычислительной техники в Великобритании.

В 1948 году Алан совместно со своим бывшим коллегой начал писать шахматную программу для компьютера, который ещё не существовал.

В том же году Тьюринг изобрёл метод LU-разложения, который используется для решения систем линейных уравнений, обращения матриц и вычисления определителя.

Тест Тьюринга

В 1948 году Алан Тьюринг получил звание Reader в математическом департаменте Манчестерского университета. Там в 1949 году он стал директором компьютерной лаборатории, где была сосредоточена работа по программированию Манчестерского Марка I.

В то же время Тьюринг продолжал работать над более абстрактными математическими задачами, а в своей работе «Computing Machinery and Intelligence» (журнал «Mind», октябрь 1950) он обратился к проблеме искусственного интеллекта и предложил эксперимент, ставший впоследствии известным как тест Тьюринга.

Его идея заключалась в том, что можно считать, что компьютер «мыслит», если человек, взаимодействующий с ним, не сможет в процессе общения отличить компьютер от другого человека. В этой работе Тьюринг предположил, что вместо того, чтобы пытаться создать программу, симулирующую разум взрослого человека, намного проще было бы начать с разума ребёнка, а затем обучать его. CAPTCHA, основанный на обратном тесте Тьюринга, широко распространён в интернете.

В 1951 году Тьюринг был избран членом Лондонского королевского общества.

В первоначальной формулировке «тест Тьюринга» предполагает ситуацию, в которой два человека, мужчина и женщина, по некоторому каналу, исключающему восприятие голоса, общаются с отделенным от них стеной третьим человеком, который пытается по косвенным вопросам определить пол каждого из своих собеседников; при этом мужчина пытается сбить с толку спрашивающего, а женщина помогает спрашивающему выяснить истину.

Вопрос при этом заключается в том, сможет ли в этой «имитационной игре» вместо мужчины столь же успешно участвовать машина (будет ли при этом спрашивающий ошибаться в своих выводах столь же часто). Впоследствии получила распространение упрощённая форма теста, в которой выясняется, может ли человек, общаясь в аналогичной ситуации с неким собеседником, определить, общается он с другим человеком или же с искусственным устройством.

Данный мысленный эксперимент имел ряд принципиальных следствий. Во-первых, он предложил некоторый операциональный критерий для ответа на вопрос «Может ли машина мыслить?».

Во-вторых, этот критерий оказался лингвистическим: указанный вопрос был явным образом заменен вопрос о том, может ли машина адекватным образом общаться с человеком на естественном языке. Тьюринг прямо писал о замене формулировки и при этом выражал уверенность в том, что «метод вопросов и ответов пригоден для того, чтобы охватить почти любую область человеческой деятельности, какую мы захотим ввести в рассмотрение».

Следствием этого стала та важнейшая роль, которую в дальнейшем развитии искусственного интеллекта, во всяком случае, до 1980-х годов играли исследования по моделированию понимания и производства естественного языка. В 1977 году тогдашний директор лаборатории искусственного интеллекта Массачусетского технологического института П.Уинстон писал, что научить компьютер понимать естественный язык – это все равно, что добиться построения интеллекта вообще.

Транскрипт

1 Московский государственный университет им. М.В. Ломоносова Факультет вычислительной математики и кибернетики В.Н. Пильщиков, В.Г. Абрамов, А.А. Вылиток, И.В. Горячая Машина Тьюринга и алгоритмы Маркова. Решение задач (Учебно-методическое пособие) Москва, 2006


2 УДК ББК П32 Пильщиков В.Н., Абрамов В.Г., Вылиток А.А., Горячая И.В. Машина Тьюринга и алгоритмы Маркова. Решение задач. (Учебно-методическое пособие) - М.: МГУ, с. Издательский отдел факультета ВМК МГУ (лицензия ЛР от) Пособие посвящено решению задач по теме «Введение в теорию алгоритмов», изучаемой на первом курсе факультета ВМК МГУ в рамках дисциплины «Алгоритмы и алгоритмические языки». Это задачи на составление алгоритмов в виде машины Тьюринга и нормальных алгоритмов Маркова, а также задачи теоретического характера. В пособии приводятся необходимые сведения по теории алгоритмов, подробно объясняются типичные приёмы решения задач и предлагается большой набор задач для самостоятельного решения. Пособие рассчитано на студентов первого курса факультета ВМК МГУ и преподавателей, ведущих семинарские занятия по программированию. Рецензенты: доцент Баула В.Г. доцент Корухова Л.С. Печатается по решению Редакционно-издательского совета факультета вычислительной математики и кибернетики МГУ им. М.В. Ломоносова. ISBN??? Издательский отдел факультета вычислительной математики и кибернетики МГУ им. М.В. Ломоносова,


3 1. Машина Тьюринга В разделе рассматриваются задачи на составление алгоритмов для машины Тьюринга. Приводится краткое описание этой машины, на примерах объясняются основные приёмы составления таких алгоритмов и предлагаются задачи для самостоятельного решения. 1.1 Краткое описание машины Тьюринга Структура машины Тьюринга Машина Тьюринга (МТ) состоит из двух частей ленты и автомата (см. слева): лента: a b b Λ Λ a b b Λ Λ автомат: q q Лента используется для хранения информации. Она бесконечна в обе стороны и разбита на клетки, которые никак не нумеруются и не именуются. В каждой клетке может быть записан один символ или ничего не записано. Содержимое клетки может меняться в неё можно записать другой символ или стереть находящийся там символ. Договоримся пустое содержимое клетки называть символом «пусто» и обозначать знаком Λ («лямбда»). В связи с этим изображение ленты, показанное на рисунке справа, такое же, как и на рисунке слева. Данное соглашение удобно тем, что операцию стирания символа в некоторой клетке можно рассматривать как запись в эту клетку символа Λ, поэтому вместо длинной фразы «записать символ в клетку или стереть находящийся там символ» можно говорить просто «записать символ в клетку». Автомат это активная часть МТ. В каждый момент он размещается под одной из клеток ленты и видит её содержимое; это видимая клетка, а находящийся в ней символ видимый символ; содержимое соседних и других клеток автомат не видит. Кроме того, в каждый момент автомат находится в одном из состояний, которые будем обозначать буквой q с номерами: q1, q2 и т.п. Находясь в некотором состоянии, автомат выполняет какую-то определённую операцию (например, перемещается направо по ленте, заменяя все символы b на a), находясь в другом состоянии другую операцию. Пару из видимого символа (S) и текущего состояния автомата (q) будем называть конфигурацией и обозначать . Автомат может выполнять три элементарных действия: 1) записывать в видимую клетку новый символ (менять содержимое других клеток автомат не может); 2) сдвигаться на одну клетку влево или вправо («перепрыгивать» сразу через несколько клеток автомат не может); 3) переходить в новое состояние. Ничего другого делать автомат не умеет, поэтому все более сложные операции так или иначе должны быть сведены к этим трём элементарным действиям. 3


4 Такт работы машины Тьюринга МТ работает тактами, которые выполняются один за другим. На каждом такте автомат МТ выполняет три следующих действия, причем обязательно в указанном порядке: 1) записывает некоторый символ S в видимую клетку (в частности, может быть записан тот же символ, что и был в ней, тогда содержимое этой клетки не меняется); 2) сдвигается на одну клетку влево (обозначение L, от left), либо на одну клетку вправо (обозначение R, от right), либо остается неподвижным (обозначение N). 3) переходит в некоторое состояние q (в частности, может остаться в прежнем состоянии). Формально действия одного такта будем записывать в виде тройки: S, , q где конструкция с квадратными скобками означает возможность записи в этом месте любой из букв L, R или N. Например, такт *,L,q8 означает запись символа * в видимую клетку, сдвиг на одну клетку влево и переход в состояние q8. Программа для машины Тьюринга Сама по себе МТ ничего не делает. Для того чтобы заставить её работать, надо написать для неё программу. Эта программа записывается в виде следующей таблицы: q 1 q j q m S 1 S 2 S i S n Λ S, , q Слева перечисляются все состояния, в которых может находиться автомат, сверху все символы (в том числе и Λ), которые автомат может видеть на ленте. (Какие именно символы и состояния указывать в таблице определяет автор программы.) На пересечениях же (в ячейках таблицы) указываются те такты, которые должен выполнить автомат, когда он находится в соответствующем состоянии и видит на ленте соответствующий символ. В целом таблица определяет действия МТ при всех возможных конфигурациях и тем самым полностью задаёт поведение МТ. Описать алгоритм в виде МТ значит предъявить такую таблицу. (Замечание. Часто МТ определяют как состоящую из ленты, автомата и программы, поэтому при разных программах получаются разные МТ. Мы же будет считать, в духе современных компьютеров, что МТ одна, но она может выполнять разные программы.) 4


5 Правила выполнения программы До выполнения программы нужно проделать следующие предварительные действия. Во-первых, надо записать на ленту входное слово, к которому будет применена программа. Входное слово это конечная последовательность символов, записанных в соседних клетках ленты; внутри входного слова пустых клеток быть не должно, а слева и справа от него должны быть только пустые клетки. Пустое входное слово означает, что все клетки ленты пусты. Во-вторых, надо установить автомат в состояние q 1 (указанное в таблице первым) и разместить его под первым символом входного слова: a b b q 1 Если входное слово пустое, то автомат может смотреть в любую клетку, т.к. все они пусты. После этих предварительных действий начинается выполнение программы. В таблице отыскивается ячейка на пересечении первой строки (т.к. автомат находится в состоянии q 1) и того столбца, который соответствует первому символу входного слова (это необязательно левый столбец таблицы), и выполняется такт, указанный в этой ячейке. В результате автомат окажется в новой конфигурации. Теперь такие же действия повторяются, но уже для новой конфигурации: в таблице отыскивается ячейка, соответствующая состоянию и символу этой конфигурации, и выполняется такт из этой ячейки. И так далее. Когда завершается выполнение программы? Введём понятие такта останова. Это такт, который ничего не меняет: автомат записывает в видимую клетку тот же символ, что и был в ней раньше, не сдвигается и остается в прежнем состоянии, т.е. это такт S,N,q для конфигурации . Попав на такт останова, МТ, по определению, останавливается, завершая свою работу. В целом возможны два исхода работы МТ над входным словом: 1) Первый исход «хороший»: это когда в какой-то момент МТ останавливается (попадает на такт останова). В таком случае говорят, что МТ применима к заданному входному слову. А то слово, которое к этому моменту получено на ленте, считается выходным словом, т.е. результатом работы МТ, ответом. В момент останова должны быть выполнены следующие обязательные условия: внутри выходного слова не должно быть пустых клеток (отметим, что во время выполнения программы внутри обрабатываемого слова пустые клетки могут быть, но в конце их уже не должно остаться); автомат обязан остановиться под одним из символов выходного слова (под каким именно не играет роли), а если слово пустое под любой клеткой ленты. 5


6 2) Второй исход «плохой»: это когда МТ зацикливается, никогда не попадая на такт останова (например, автомат на каждом шаге сдвигается вправо и потому не может остановиться, т.к. лента бесконечна). В этом случае говорят, что МТ неприменима к заданному входному слову. Ни о каком результате при таком исходе не может идти и речи. Отметим, что один и тот же алгоритм (программа МТ) может быть применимым к одним входным словам (т.е. останавливаться) и неприменимым к другим (т.е. зацикливаться). Таким образом, применимость/неприменимость зависит не только от самого алгоритма, но и от входного слова. На каких входных словах алгоритм должен останавливаться? На, так сказать, хороших словах, т.е. на тех, которые относятся к допустимым исходным данным решаемой задачи, для которых задача осмысленна. Но на ленте могут быть записаны любые входные слова, в том числе и те, для которых задача не имеет смысла; на таких словах поведение алгоритма не фиксируется, он может остановиться (при любом результате), а может и зациклиться. Соглашения для сокращения записи Договоримся о некоторых соглашениях, сокращающих запись программы для МТ. 1) Если в такте не меняется видимый символ, или автомат не сдвигается, или не меняется состояние автомата, то в соответствующей позиции такта мы не будем ничего писать. Например, при конфигурации следующие записи тактов эквивалентны: a,r,q3,r,q3 (но не Λ,R,q3!!) b,n,q2 b,q2 a,l,q1,l, a,n,q1, (это такт останова) Замечание. Запятые в тактах желательно не опускать, т.к. иначе возможна путаница, если среди символов на ленте могут встретиться буквы L и R. 2) Если надо указать, что после выполнения некоторого такта МТ должна остановиться, то в третьей позиции этого такта будем писать знак «!». Например, такт b,l,! означает следующие действия: запись символа b в видимую клетку ленты, сдвиг влево и останов. Формально можно считать, что в программе МТ имеется состояние с названием!, во всех ячейках которого записаны такты останова. При этом, однако, такую строку явно не выписывают, а лишь подразумевают. 3) Если заранее известно, что в процессе выполнения программы не может появиться некоторая конфигурация, тогда, чтобы подчеркнуть это явно, будем в соответствующей ячейке таблицы рисовать крестик. (Формально этот крестик считается тактом останова.) Эти соглашения необязательны, но они сокращают запись программы и упрощают её восприятие. 6


7 1.2 Примеры на составление программ для МТ Рассмотрим примеры на составление программ для МТ, чтобы продемонстрировать некоторые типичные приёмы программирования на МТ. Для сокращения формулировки задач введём следующие два соглашения: буквой Р будем обозначать входное слово; буквой А будем обозначать алфавит входного слова, т.е. набор тех символов, из которых и только которых может состоять Р (отметим, однако, что в промежуточных и выходном словах могут появляться и другие символы). Пример 1 (перемещение автомата, замена символов) А={0,1,2,3,4,5,6,7,8,9}. Пусть Р непустое слово; значит, Р это последовательность из десятичных цифр, т.е. запись неотрицательного целого числа в десятичной системе. Требуется получить на ленте запись числа, которое на 1 больше числа Р. Решение. Для решения этой задачи предлагается выполнить следующие действия: 1. Перегнать автомат под последнюю цифру числа. 2. Если это цифра от 0 до 8, то заменить её цифрой на 1 больше и остановиться; например: Если же это цифра 9, тогда заменить её на 0 и сдвинуть автомат к предыдущей цифре, после чего таким же способом увеличить на 1 эту предпоследнюю цифру; например: Особый случай: в Р только девятки (например, 99). Тогда автомат будет сдвигаться влево, заменяя девятки на нули, и в конце концов окажется под пустой клеткой. В эту пустую клетку надо записать 1 и остановиться (ответом будет 100): В виде программы для МТ эти действия описываются следующим образом: Λ q1 0,R,q1 1,R,q1 2,R,q1 3,R,q1 4,R,q1 5,R,q1 6,R,q1 7,R,q1 8,R,q1 9,R,q1 Λ,L,q2 q2 1,N,! 2, N,! 3, N,! 4, N,! 5, N,! 6, N,! 7, N,! 8, N,! 9, N,! 0,L,q2 1,N,! Пояснения. q1 это состояние, в котором автомат «бежит» под последнюю цифру числа. Для этого он всё время движется вправо, не меняя видимые цифры и оставаясь в том же состоянии. Но здесь есть одна особенность: когда автомат находится под 7


8 последней цифрой, то он ещё не знает об этом (ведь он не видит, что записано в соседних клетках) и определит это лишь тогда, когда попадёт на пустую клетку. Поэтому, дойдя до первой пустой клетки, автомат возвращается назад под последнюю цифру и переходит в состояние q2 (вправо двигаться уже не надо). q2 это состояние, в котором автомат прибавляет 1 к той цифре, которую видит в данный момент. Сначала это последняя цифра числа; если она в диапазоне от 0 до 8, то автомат заменяет её цифрой, которая на 1 больше, и останавливается. Но если это цифра 9, то автомат заменяет её на 0 и сдвигается влево, оставаясь в состоянии q2. Тем самым, он будет теперь прибавлять 1 к предыдущей цифре. Если и эта цифра равна 9, то автомат заменяет её на 0 и сдвигается влево, оставаясь попрежнему в состоянии q2, т.к. должен выполнить то же самое действие увеличить на 1 видимую цифру. Если же автомат сдвинулся влево, а в видимой клетке нет цифры (а есть «пусто»), то он записывает сюда 1 и останавливается. Отметим, что для пустого входного слова наша задача не определена, поэтому на этом слове МТ может вести себя как угодно. В нашей программе, например, при пустом входном слове МТ останавливается и выдает ответ 1. Выше мы привели запись программы в полном, несокращённом виде. Теперь же приведём запись программы в сокращённом, более наглядном виде, при этом справа дадим краткое пояснение действий, которые реализуются в соответствующих состояниях автомата: Λ q1,r,r,r,r,r,r,r,r,r,r,l,q2 под последнюю цифру q2 1,! 2,! 3,! 4,! 5,! 6,! 7,! 8,! 9,! 0,L, 1,! видимая цифра + 1 Именно так мы и будем в дальнейшем записывать программы. Пример 2 (анализ символов) А={a,b,c}. Перенести первый символ непустого слова Р в его конец. Например: a b c b b c b a Решение. Для решения этой задачи предлагается выполнить следующие действия: 1. Запомнить первый символ слова P, а затем стереть этот символ. 2. Перегнать автомат вправо под первую пустую клетку за P и записать в неё запомненный символ. Как «бегать» вправо, мы уже знаем из предыдущего примера. А вот как запомнить первый символ? Ведь в МТ нет другого запоминающего устройства, кроме ленты, а запоминать символ в какой-то клетке на ленте бессмысленно: как только автомат сдвинется влево или вправо от этой клетки, он тут же забудет данный символ. Что делать? Выход здесь таков надо использовать разные состояния автомата. Если первый символ это a, то надо перейти в состояние q2, в котором автомат 8


9 бежит вправо и записывает в конце a. Если же первым был символ b, тогда надо перейти в состояние q3, где делается всё то же самое, только в конце записывается символ b. Если же первым был символ c, тогда переходим в состояние q4, в котором автомат дописывает за входным словом символ c. Следовательно, то, каким был первый символ, мы фиксируем переводом автомата в разные состояния. Это типичный приём при программировании на МТ. С учётом сказанного программа будет такой: a b c Λ q1 Λ,R,q2 Λ,R,q3 Λ,R,q4,R, анализ 1-го символа, удаление его, разветвление q2,r,r,r, a,! запись a справа q3,r,r,r, b,! запись b справа q4,r,r,r, c,! запись c справа Рассмотрим поведение этой программы на входных словах, содержащих не более одного символа. При пустом слове, которое является «плохим» для задачи, программа зациклится автомат, находясь в состоянии q1 и попадая всё время на пустые клетки, будет бесконечно перемещаться вправо. (Конечно, в этом случае программу можно было бы остановить, но мы специально сделали зацикливание, чтобы продемонстрировать такую возможность.) Если же во входном слове ровно один символ, тогда автомат сотрёт этот символ, сдвинется на одну клетку вправо и запишет в неё данный символ: c c q1 q4! Таким образом, слово из одного символа попросту сдвинется на клетку вправо. Это допустимо. Ведь клетки ленты не нумерованы, поэтому местоположение слова на ленте никак не фиксируется и перемещение слова влево или вправо заметить нельзя. В связи с этим не требуется, чтобы выходное слово обязательно находилось в том же месте, где было входное слово, результат может оказаться и левее, и правее этого места. Пример 3 (сравнение символов, стирание слова) А={a,b,c}. Если первый и последний символы (непустого) слова Р одинаковы, тогда это слово не менять, а иначе заменить его на пустое слово. Решение. Для решения этой задачи предлагается выполнить следующие действия: 1. Запомнить первый символ входного слова, не стирая его. 2. Переместить автомат под последний символ и сравнить его с запомненным. Если они равны, то больше ничего не делать. 3. В противном случае уничтожить всё входное слово. Как запоминать символ и как перегонять автомат под последний символ слова, мы уже знаем из предыдущих примеров. Стирание же входного слова реализуется 9


10 заменой всех его символов на символ Λ. При этом, раз уж автомат оказался в конце слова, будем перемещать автомат справа налево до первой пустой клетки. Эти действия описываются следующей программой для МТ (напомним, что крестик в ячейке таблицы означает невозможность появления соответствующей конфигурации при выполнении программы): a b c Λ q1,q2,q4,q6,! анализ 1-го символа, разветвление q2,r,r,r, L,q3 идти к последнему символу при 1-м символе a q3,!, q8, q8 сравнить посл. символ с a, не равны на q8 (стереть P) q4,r,r,r, L,q5 аналогично при 1-м символе b q5, q8,!, q8 q6,r,r,r, L,q7 аналогично при 1-м символе c q7, q8, q8,! q8 Λ,L, Λ,L, Λ,L,! стереть всё слово, двигаясь справа налево Пример 4 (удаление символа из слова) А={a,b}. Удалить из слова Р его второй символ, если такой есть. Решение. Казалось бы, эту задачу решить просто: надо сдвинуть автомат под клетку со вторым символом и затем очистить эту клетку: a b b a a b b a a b a Однако напомним, что внутри выходного слова не должно быть пустых клеток. Поэтому после удаления второго символа надо «сжать» слово, перенеся первый символ на одну клетку вправо. Для этого автомат должен вернуться к первому символу, запомнить его и стереть, а затем, снова сдвинувшись вправо, записать его в клетку, где был второй символ. Однако начальный «поход» вправо ко второму символу, чтобы его стереть, и последующий возврат к первому символу являются лишними действиями: какая разница переносить первый символ в пустую клетку или в клетку с каким-то символом? Поэтому сразу запоминаем первый символ, стираем его и записываем вместо второго символа: a b b a b b a a b a В виде программы для МТ всё это записывается так: a b Λ q1 Λ,R,q2 Λ,R,q3,! анализ и удаление 1-го символа, разветвление q2,! a,! a,! замена 2-го символа на a q3 b,!,! b,! замена 2-го символа на b Пример 5 (сжатие слова) А={a,b,c}. Удалить из слова Р первое вхождение символа a, если такое есть. Решение. В предыдущем примере мы переносили на позицию вправо только один сим- 10


11 вол. В данном же примере мы будем в цикле переносить вправо все начальные символы b и c входного слова до первого символа a или до пустой клетки: b c b c b a a b b a a b c a a b c b a Центральный момент здесь как перенести символ x из левой клетки в очередную клетку, где находится некоторый символ y, чтобы затем этот символ y можно было перенести в правую клетку? Если через q x обозначить состояние, в котором в видимую клетку надо записать символ x, находившийся ранее в клетке слева, тогда это действие можно изобразить так: x y y z x z q x Для этого предлагается выполнить такт x,r,q y, в котором объединены следующие три действия: во-первых, в видимую клетку записывается символ x, взятый из клетки слева; во-вторых, автомат сдвигается вправо под клетку, в которую затем надо будет записать только что заменённый символ y; в-третьих, автомат переходит в состояние q y, в котором он и будет выполнять эту запись. Повторение таких тактов в цикле и приведёт к сдвигу вправо на одну позицию начальных символов входного слова. Этот цикл должен закончиться, когда в очередной клетке окажется символ a или Λ (y=a или y=λ), а в начале цикла можно считать, что на место первого символа слева переносится символ «пусто» (x=λ). В итоге получается следующая программа для МТ: a b c Λ q1 Λ,R,! Λ,R,q2 Λ,R,q3,! q Λ : стереть 1-й символ и перенести его вправо q2 b,!,r, b,r,q3 b,! q b: запись b, перенос ранее видимого символа вправо q3 c,! c,r,q2,r, c,! q c: запись c, перенос ранее видимого символа вправо В этой программе следует обратить внимание на такт Λ,R,!, который выполняется в конфигурации , т.е. когда первым символом входного слова является a. Ясно, что надо просто стереть этот символ и остановиться. Однако в этом такте указан ещё и сдвиг вправо. Зачем? Напомним, что в момент останова автомат должен находиться под выходным словом (под любым его символом), поэтому мы и сдвигаем автомат с пустой клетки на клетку с первым символом выходного слова, который во входном слове был вторым. b q y Пример 6 (вставка символа в слово) А={a,b,c}. Если Р непустое слово, то за его первым символом вставить символ a. Решение. Ясно, что между первым и вторым символами слова Р надо освободить клетку для нового символа a. Для этого надо перенести на одну позицию влево 11


12 первый символ (на старом месте его можно пока не удалять), а затем, вернувшись на старое место, записать символ a: b c a b c a b b c a b a c a Перенос символа на одну позицию влево аналогичен переносу символа вправо, о чём говорилось в двух предыдущих примерах, поэтому приведем программу для МТ без дополнительных комментариев. Отметим лишь, что в состояниях q2, q3 и q4 автомат может видеть только пустую клетку, а в состоянии q5 он обязательно видит первый символ входного слова, но не пустую клетку. a b c Λ q1,l,q2,l,q3,l,q4,! анализ 1-го символа для переноса его влево q2 a,r,q5 приписать a слева q3 b,r,q5 приписать b слева q4 c,r,q5 приписать c слева q5,! a,! a,! заменить бывший 1-й символ на a Пример 7 (раздвижка слова) А={a,b,c}. Вставить в слово P символ a за первым вхождением символа c, если такое есть. Решение. Просматриваем входное слово слева направо до пустой клетки или до первого символа c. В первом случае c не входит в P, поэтому ничего не делаем. Во втором случае надо освободить место для вставляемого символа a, для чего сдвигаем начало слова P (от первого символа до найденного символа c) на одну позицию влево. При этом осуществляем такой сдвиг справа налево от символа c к началу слова, раз уж автомат находится под этим символом. Кроме того, чтобы затем не возвращаться к освободившейся позиции, начинаем этот сдвиг с записи a вместо найденного символа c. Поскольку этот циклический сдвиг влево реализуется аналогично циклическому сдвигу вправо из примера 5, то не будем пояснять его, а сразу приведём программу для МТ: a b c Λ q1,r,r, a,l,q4,l,! вправо до с, вставка a вместо c, перенос c влево q2,l, a,l,q3 a,l,q4 a,! перенос a справа q3 b,l,q2,l, b,l,q4 b,! перенос b справа q4 c,l,q2 c,l,q3,l, c,! перенос c справа Пример 8 (формирование слова на новом месте) А={a,b,c}. Удалить из P все вхождения символа a. Решение. Предыдущие примеры показывают, что в МТ достаточно сложно реализуются вставки символов в слова и удаления символов из слов. Поэтому иногда проще не раздвигать или сжимать входное слово, а формировать выходное сло- 12


13 во в другом, свободном месте ленты. Именно так мы и поступим при решении данной задачи. Конкретно предлагается выполнить следующие действия: 1. Выходное слово будем строить справа от входного. Чтобы разграничить эти слова, отделим их некоторым вспомогательным символом, например знаком =, отличным от всех символов алфавита A (см. шаг 1). (Напомним, что на ленте могут быть записаны не только символы из алфавита входного слова.) 2. После этого возвращаемся к началу входного слова (см. шаг 2). a b c a b c = a b c = Теперь наша задача перенести в цикле все символы входного слова, кроме a, вправо за знак = в формируемое выходное слово. Для этого анализируем первый символ входного слова. Если это a, тогда стираем его и переходим к следующему символу (см. шаг 3). Если же первый символ это b или c, тогда стираем его и «бежим» вправо до первой пустой клетки (см. шаг 4), куда и записываем этот символ (см. шаг 5). b c = c = c = b Снова возвращаемся налево к тому символу, который стал первым во входном слове, и повторяем те же самые действия, но уже по отношению к этому символу (см. шаги 6-9). c = b = b = b c Этот цикл завершается, когда при возврате налево мы увидим в качестве первого символа знак =. Это признак того, что мы полностью просмотрели входное слово и перенесли все его символы, отличные от a, в формируемое справа выходное слово. Надо этот знак стереть, сдвинуться вправо под выходное слово и остановиться (см. шаг 10). = b c b c 9 10 С учётом всего сказанного и строим программу для МТ. При этом отметим, что помимо символов a, b и c в процессе решения задачи на ленте появляется знак =, поэтому в таблице должен быть предусмотрен столбец и для этого знака. a b c = Λ q1,r,r,r, =,q2 записать справа знак = q2,l,l,l,l,r,q3 влево к 1-му символу слова q3 Λ,R, Λ,R,q4 Λ,R,q5 Λ,R,! анализ и удаление его, разветвление q4,r,r,r,r, b,q2 запись b справа, возврат налево (в цикл) q5,r,r,r,r, c,q2 запись c справа, возврат налево (в цикл) 13


14 Пример 9 (фиксирование места на ленте) А={a,b}. Удвоить слово P, поставив между ним и его копией знак =. Например: a a b a a b = a a b Решение. Эта задача решается аналогично предыдущей: в конец входного слова записываем знак =, затем возвращаемся к началу слова и в цикле все его символы (в том числе и a) копируем в пустые клетки справа: a a b a a b = a a b = a a b = a 1 2 Однако есть и отличие: копируемые символы входного слова не удаляются, и это приводит к следующей проблеме. Записав справа копию очередного символа, мы затем должны вернуться к входному слову в позицию этого символа и потом сдвинуться вправо к следующему символу, чтобы скопировать уже его. Но как узнать, в какую позицию входного слова надо вернуться? Например, откуда мы знаем в нашем примере, что после копирования первого символа a мы должны вернуться именно к первому символу входного слова, а не ко второму или третьему? В предыдущей задаче мы всегда возвращались к первому из оставшихся символов входного слова, а теперь мы сохраняем все символы, поэтому непонятно, какие символы мы уже скопировали, а какие ещё нет. Отметим также, что в МТ ячейки ленты никак не нумеруются, нет в МТ и счетчиков, которые позволили бы определить, сколько символов мы уже скопировали. В общем виде проблема, с которой мы столкнулись, следующая: как зафиксировать на ленте некоторую позицию, в которой мы уже были и к которой позже должны вернуться? Обычно эта проблема решается так. Когда мы оказываемся в этой позиции в первый раз, то заменяем находящийся в ней символ на его двойник на новый вспомогательный символ, причем разные символы заменяем на разные двойники, например a на A и b на B. После этого мы выполняем какие-то действия в других местах ленты. Чтобы затем вернуться к нашей позиции, надо просто отыскать на ленте ту клетку, где находится символ A или B. Затем в данной клетке можно восстановить прежний символ, если нам больше не надо фиксировать эту позицию (именно для восстановления прежнего символа и надо было заменять разные символы на разные двойники). Воспользуемся этим приёмом в нашей задаче, выполняя следующие действия: 1. Как уже сказано, вначале записываем знак = за входным словом (см. шаг 1 выше). 2. Затем возвращаемся под первый символ входного слова (см. шаг 2 выше). 3. Далее заменяем видимый символ a на двойник A (см. шаг 3 ниже), «бежим» вправо до первой свободной клетки и записываем в неё символ a (см. шаг 4). После этого возвращаемся влево к клетке с двойником A (см. шаг 5), восстанавливаем прежний символ a и сдвигаемся вправо к следующему символу (см. шаг 6). 14


15 a a b = A a b = A a b = a A a b = a a a b = a a A b = a a A b = a a a a B = a a b a a b = a a b Теперь аналогичным образом копируем второй символ (заменяем его на A, в конец дописываем a и т.д.) и все последующие символы входного слова. 4. Когда мы скопируем последний символ входного слова и вернёмся к его двойнику (после шага 12), то затем после сдвига на одну позицию вправо мы попадём на знак = (шаг 13). Это сигнал о том, что входное слово полностью скопировано, поэтому работу МТ надо завершать. С учётом всего сказанного получаем следующую программу для МТ: a b = A B Λ q1,r,r, =,L,q2 поставить = справа от слова q2,l,l,r,q3 налево под 1-й символ q3 A,R,q4 B,R,q5,! анализ и замена очередного символа q4,r,r,r, a,q6 запись a справа q5,r,r,r, b,q6 запись b справа q6,l,l,l, a,r,q3 b,r,q3 возврат, восстановление, к след. символу Отметим, что в этой программе можно избавиться от состояния q6, если объединить его с состоянием q2, предусмотрев в q2 возврат влево как до пустой клетки, так и до символов A и B: a b = A B Λ... q2,l,l,l, a,r,q3 b,r,q3,r,q3 налево до Λ, A или B Задачи для самостоятельного решения Замечания: 1) В задачах рассматриваются только целые неотрицательные числа, если не сказано иное. 2) Под «единичной» системой счисления понимается запись неотрицательного целого числа с помощью палочек должно быть выписано столько палочек, какова величина числа; например: 2, 5, 0 <пустое слово>. 1.1 A={a,b,c}. Приписать слева к слову P символ b (P bp). 1.2 A={a,b,c}. Приписать справа к слову P символы bc (P Pbc). 1.3 A={a,b,c}. Заменить на a каждый второй символ в слове P. 15


16 1.4 A={a,b,c}. Оставить в слове P только первый символ (пустое слово не менять). 1.5 A={a,b,c}. Оставить в слове P только последний символ (пустое слово не менять). 1.6 A={a,b,c}. Определить, является ли P словом ab. Ответ (выходное слово): слово ab, если является, или пустое слово иначе. 1.7 A={a,b,c}. Определить, входит ли в слово P символ a. Ответ: слово из одного символа a (да, входит) или пустое слово (нет). 1.8 A={a,b,c}. Если в слово P не входит символ a, то заменить в P все символы b на с, иначе в качестве ответа выдать слово из одного символа a. 1.9 A={a,b,0,1}. Определить, является ли слово P идентификатором (непустым словом, начинающимся с буквы). Ответ: слово a (да) или пустое слово (нет) A={a,b,0,1}. Определить, является ли слово P записью числа в двоичной системе счисления (непустым словом, состоящем только из цифр 0 и 1). Ответ: слово 1 (да) или слово A={0,1}. Считая непустое слово P записью двоичного числа, удалить из него незначащие нули, если такие есть A={0,1}. Для непустого слова P определить, является ли оно записью степени двойки (1, 2, 4, 8,) в двоичной системе счисления. Ответ: слово 1 (является) или слово A={0,1,2,3}. Считая непустое слово P записью числа в четверичной системе счисления, определить, является оно чётным числом или нет. Ответ: 1 (да) или A={0,1}. Считая непустое слово P записью числа в двоичной системе, получить двоичное число, равное учетверенному числу P (например:) A={0,1}. Считая непустое слово P записью числа в двоичной системе, получить двоичное число, равное неполному частному от деления числа P на 2 (например:) A={a,b,c}. Если P слово чётной длины (0, 2, 4,), то выдать ответ a, иначе пустое слово A={0,1,2}. Считая непустое слово P записью числа в троичной системе счисления, определить, является оно чётным числом или нет. Ответ: 1 (да) или 0. (Замечание: в чётном троичном числе должно быть чётное количество цифр 1.) 1.18 A={a,b,c}. Пусть P имеет нечётную длину. Оставить в P только средний символ A={a,b,c}. Если слово P имеет чётную длину, то оставить в нём только левую половину A={a,b,c}. Приписать слева к непустому слову P его первый символ. 16


17 1.21 A={a,b}. Для непустого слова P определить, входит ли в него ещё раз его первый символ. Ответ: a (да) или пустое слово A={a,b}. В непустом слове P поменять местами его первый и последний символы A={a,b}. Определить, является P палиндромом (перевёртышем, симметричным словом) или нет. Ответ: a (да) или пустое слово A={a,b}. Заменить в P каждое вхождение a на bb A={a,b,c}. Заменить в P каждое вхождение ab на c A={a,b}. Удвоить слово P (например: abb abbabb) A={a,b}. Удвоить каждый символ слова P (например: bab bbaabb) A={a,b}. Перевернуть слово P (например: abb bba) A={0,1}. Считая непустое слово P записью двоичного числа, получить это же число, но в четверичной системе. (Замечание: учесть, что в двоичном числе может быть нечётное количество цифр.) 1.30 A={0,1,2,3}. Считая непустое слово P записью числа в четверичной системе счисления, получить запись этого числа в двоичной системе A={0,1,2}. Считая непустое слово P записью положительного числа в троичной системе счисления, уменьшить это число на A={ }. Считая слово P записью числа в единичной системе счисления, получить запись этого числа в троичной системе. (Рекомендация: следует в цикле удалять из «единичного» числа по палочке и каждый раз прибавлять 1 к троичному числу, которое вначале положить равным 0.) 1.33 A={0,1,2}. Считая непустое слово P записью числа в троичной системе счисления, получить запись этого числа в единичной системе Пусть слово P имеет следующий вид: {... {... n m где один из знаков +, /, или, слева от которого указано n палочек, а справа m палочек. Реализовать соответствующую операцию в единичной системе счисления (в качестве ответа выдать слово, указанное справа от стрелки): а) сложение: {... + {... {... (n 0, m 0) n m n+ m б) вычитание: {... {... {... (n m 0) n m n m в) умножение: {... {... {... (n 0, m 0) n m n m г) деление нацело: {{... /... {... (n 0, m>0, k=n div m) n m k д) взятие остатка: {... {... {... (n 0, m>0, k=n mod m) n m k 17


18 е) максимум: {... {... {... (n 0, m 0, k=max(n,m)) n m k ж) минимум: {... {... {... (n 0, m 0, k=min(n,m)) k n m 1.35 A={ }. Считая слово P записью числа в единичной системе, определить, является ли это число степенью 3 (1, 3, 9, 27,). Ответ: пустое слово, если является, или слово из одной палочки иначе A={ }. Считая слово P записью числа n в единичной системе, получить в этой же системе число 2 n A={ }. Пусть слово P является записью числа 2 n (n=0, 1, 2,) в единичной системе. Получить в этой же системе число n Пусть P имеет вид Q+R, где Q и R непустые слова из символов 0, 1 и 2. Трактуя Q и R как записи чисел в троичной системе счисления (возможно, с незначащими нулями), выдать в качестве ответа запись суммы этих чисел в той же троичной системе Пусть P имеет вид Q R, где Q и R непустые слова из символов 0, 1 и 2. Трактуя Q и R как записи чисел в троичной системе счисления (возможно, с незначащими нулями) и считая, что Q R, выдать в качестве ответа запись разности этих чисел в той же троичной системе Пусть P имеет вид Q=R, где Q и R любые слова из символов a и b. Выдать ответ a, если слова Q и R одинаковы, и пустое слово иначе Пусть P имеет вид Q=R, где Q и R непустые слова из символов 0 и 1. Трактуя Q и R как записи двоичных чисел (возможно, с незначащими нулями), выдать в качестве ответа слово 1, если эти числа равны, и слово 0 иначе Пусть P имеет вид Q>R, где Q и R непустые слова из символов 0 и 1. Трактуя Q и R как записи двоичных чисел (возможно, с незначащими нулями), выдать в качестве ответа слово 1, если число Q больше числа R, и слово 0 иначе A={(,)}. Определить, сбалансировано ли слово P по круглым скобкам. Ответ: Д (да) или Н (нет) A={a,b}. Если в P символов a больше, чем символов b, то выдать ответ a, если символов a меньше символов b, то выдать ответ b, а иначе в качестве ответа выдать пустое слово. 2. Нормальные алгоритмы Маркова В разделе рассматриваются задачи на составление нормальных алгоритмов Маркова. Приводится краткое описание этих алгоритмов, на примерах объясняются основные приёмы их составления и предлагаются задачи для самостоятельного решения. 18


19 2.1 Краткое описание нормальных алгоритмов Маркова Подстановки Интересной особенностью нормальных алгоритмов Маркова (НАМ) является то, что в них используется лишь одно элементарное действие так называемая подстановка, которая определяется следующим образом. Формулой подстановки называется запись вида α β (читается «α заменить на β»), где α и β любые слова (возможно, и пустые). При этом α называется левой частью формулы, а β правой частью. Сама подстановка (как действие) задается формулой подстановки и применяется к некоторому слову Р. Суть операции сводится к тому, что в слове Р отыскивается часть, совпадающая с левой частью этой формулы (т.е. с α), и она заменяется на правую часть формулы (т.е. на β). При этом остальные части слова Р (слева и справа от α) не меняются. Получившееся слово R называют результатом подстановки. Условно это можно изобразить так: P x α y R x β y Необходимые уточнения: 1. Если левая часть формулы подстановки входит в слово Р, то говорят, что эта формула применима к Р. Но если α не входит в Р, то формула считается неприменимой к Р, и подстановка не выполняется. 2. Если левая часть α входит в Р несколько раз, то на правую часть β, по определению, заменяется только первое вхождение α в Р: P x α y α z R x β y α z 3. Если правая часть формулы подстановки пустое слово, то подстановка α сводится к вычеркиванию части α из Р (отметим попутно, что в формулах подстановки не принято как-либо обозначать пустое слово): P x α y R x y 4. Если в левой части формулы подстановки указано пустое слово, то подстановка β сводится, по определению, к приписыванию β слева к слову P: P x R β x Из этого правила вытекает очень важный факт: формула с пустой левой частью применима к любому слову. Отметим также, что формула с пустыми левой и правой частями не меняет слово. Определение НАМ Нормальным алгоритмом Маркова (НАМ) называется непустой конечный упорядоченный набор формул подстановки: 19


20 α1 β1 α 2 β 2... (k 1) α k β k В этих формулах могут использоваться два вида стрелок: обычная стрелка () и стрелка «с хвостиком» (a). Формула с обычной стрелкой называется обычной формулой, а формула со стрелкой «с хвостиком» заключительной формулой. Разница между ними объясняется чуть ниже. Записать алгоритм в виде НАМ значит предъявить такой набор формул. Правила выполнения НАМ Прежде всего, задается некоторое входное слово Р. Где именно оно записано не важно, в НАМ этот вопрос не оговаривается. Работа НАМ сводится к выполнению последовательности шагов. На каждом шаге входящие в НАМ формулы подстановки просматриваются сверху вниз и выбирается первая из формул, применимых к входному слову Р, т.е. самая верхняя из тех, левая часть которых входит в Р. Далее выполняется подстановка согласно найденной формуле. Получается новое слово Р. На следующем шаге это слово Р берется за исходное и к нему применяется та же самая процедура, т.е. формулы снова просматриваются сверху вниз начиная с самой верхней и ищется первая формула, применимая к слову Р, после чего выполняется соответствующая подстановка и получается новое слово Р. И так далее: Р Р Р Следует обратить особое внимание на тот факт, что на каждом шаге формулы в НАМ всегда просматриваются начиная с самой первой. Необходимые уточнения: 1. Если на очередном шаге была применена обычная формула (α β), то работа НАМ продолжается. 2. Если же на очередном шаге была применена заключительная формула (α a β), то после её применения работа НАМ прекращается. То слово, которое получилось в этот момент, и есть выходное слово, т.е. результат применения НАМ к входному слову. Как видно, разница между обычной и заключительной формулами подстановки проявляется лишь в том, что после применения обычной формулы работа НАМ продолжается, а после заключительной формулы прекращается. 3. Если на очередном шаге к текущему слову неприменима ни одна формула, то и в этом случае работа НАМ прекращается, а выходным словом считается текущее слово. Таким образом, НАМ останавливается по двум причинам: либо была применена заключительная формула, либо ни одна из формул не подошла. То и другое считается «хорошим» окончанием работы НАМ. В обоих случаях говорят, что НАМ применúм к входному слову. 20



Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики В.Н. Пильщиков, В.Г. Абрамов, А.А. Вылиток, И.В. Горячая Машина Тьюринга и алгоритмы Маркова.

МАШИНА ТЬЮРИНГА В ИЗУЧЕНИИ ТЕОРИИ АЛГОРИТМОВ Лебедева Н.Ю. Шуйский филиал Ивановского государственного университета TURING MACHINE IN THE STUDY OF THE THEORY OF ALGORITHMS Lebedeva N. Yu. Shuya branch

СЛОЖЕНИЕ Прибавить 1 к числу означает получить число, следующее за данным: 4+1=5, 1+1=14 и т.д. Сложить числа 5 и значит прибавить к 5 три раза единицу: 5+1+1+1=5+=8. ВЫЧИТАНИЕ Вычесть 1 из числа означает

Задачи и решения отборочного тура олимпиады ДМиТИ 2014-2015 Все задачи, манипуляторы и решения доступны участникам на сайте олимпиады. Все предложенные задачи оценивались одинаковым числом баллов. Графы.

Машина Тьюринга 1 Машина Тьюринга математическое понятие, а не реальная вычислительная машина. MT является математической моделью вычислительного устройства. MT была предложена Аланом Тьюрингом в 1936

Решение задач по машине тьюринга онлайн >>> Решение задач по машине тьюринга онлайн Решение задач по машине тьюринга онлайн Содержимое клетки может меняться в неё можно записать другой символ или стереть

Системы счисления В наше время человек всё время сталкивается с числами. Все мы с детства знакомы с общепринятой записью чисел при помощи арабских цифр. Однако этот способ записи использовался далеко не

Реализуемый алгоритм Мы используем следующую вариацию алгоритма Евклида для вычисления НОД чисел M и N:. a M, b N; 2. t a-b, если t = 0, останов; 3. a t, b min{a,b}, переход на шаг 2. После останова НОД(M,N)

Задачи отборочного тура Олимпиады по дискретной математике и теоретической информатике с решениями (при решении конструктивных задач участник работает с эмуляторами, в решениях приведены картинки их интерфейсов)

Глава B. Компьютерная арифметика Урок B3. Двоичная арифметика Посмотрим, как вы справились с упражнениями из Урока B2. Вот их решения. Упражнения B2-2 a) Таблица размещения гирь выглядит так: в нумерации

Занятие 23 В условиях задач M, x означают соответственно описание машины Тьюринга и входного слова в том формате, который был введён на лекции (и написан в черновике учебника). Задача 23.1. Докажите, что

Раздел 6. Теория алгоритмов. Неформальное понятие алгоритма, его основные черты и свойства. Алфавит, слова, алгоритм в алфавите. Вполне эквивалентные алгоритмы. Определение нормального алгоритма (алгоритма

ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ Известно множество способов представления чисел. В любом случае число изображается символом или группой символов (словом) некоторого алфавита. Будем называть такие символы

Задания для 11 класса Отборочный этап. Первый тур 1. Кодирование информации. Системы счисления (2 балла) [Перестановки] Сколько существует трехразрядных шестнадцатеричных чисел, для которых будут одновременно

Решение задач на тему «Представление чисел в компьютере» Типы задач: 1. Целые числа. Представление чисел в формате с фиксированной запятой. 2. Дробные числа. Представление чисел в формате с плавающей запятой.

1. Рыцари и лжецы. Логическая схема - 1. Задачи и решения очного тура Олимпиады ДмиТИ-2017-2018 За круглым столом сидят четыре человека. Каждый из них либо рыцарь, либо лжец. Рыцари всегда говорят только

Системы счисления Система счисления способ записи чисел с помощью заданного набора специальных символов (цифр). В вычислительной технике применяются позиционные системы счисления, в которых значение цифры

ЛЕКЦИЯ 3. Алгоритмы обработки одномерных массивов. Цель лекции: Знакомство с понятием массива. Приобретение навыков построения алгоритмов предназначенных для обработки одномерных массивов. 6. Алгоритмы

Демонстрационный вариант ЕГЭ 2019 г. задание 6 На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом. 1) Строится двоичная запись числа N. 2) К этой записи

Введение в системы счисления А.А. Вылиток Система счисления это способ записи чисел с помощью заданного набора специальных знаков (цифр). Существуют позиционные и непозиционные системы счисления. В непозиционных

Часть III Языки, грамматики, автоматы 137 Глава 10 Языки и конечные автоматы 10.1 Язык Дика Как мы знаем, правильные скобочные структуры перечисляются числами Каталана. Выпишем все правильные скобочные

Муниципальный этап всероссийской олимпиады школьников по информатике Москва, декабря 0 г. Задания для 7 8 классов Каждая задача оценивается в 0 баллов. Итоговый балл выставляется как сумма баллов за задачи

Виртуальные машины Введение Свыше сорока лот назад выдающийся американский математик Эмиль Л. Пост опубликовал в «Журнале символической логики» статью «Финитные комбинаторные процессы, формулировка!» (ее

Югорский физико-математический лицей ВП Чуваков Задача С6 (Теория чисел на ЕГЭ) Учебно-методическое пособие Ханты-Мансийск 0 ВП Чуваков Задача С6 (Теория чисел на ЕГЭ): Учебнометодическое пособие, - Ханты-Мансийск,

9 КЛАСС 1. В одной из клеток бесконечной клетчатой бумаги находится робот, которому могут быть отданы следующие команды: вверх (робот перемещается на соседнюю клетку сверху); вниз (робот перемещается на

Системы счисления Система счисления это способ записи чисел с помощью заданного набора специальных знаков (цифр). Существуют позиционные и непозиционные системы счисления. В непозиционных системах вес

Системы счисления Система счисления способ описания чисел с помощью знаков определенного алфавита по известным правилам. Позиционные системы счисления В позиционной системе счисления значение цифры зависит

К. Поляков, 009-06 6- (базовый уровень, время 4 мин) Тема: Поиск алгоритма минимальной длины для исполнителя. Что нужно знать: исполнитель это человек, группа людей, животное, машина или другой объект,

Лекция 5 Основы представления информации в цифровых автоматах Позиционные системы счисления Системой счисления называется совокупность приемов и правил для записи чисел цифровыми знаками. Любая предназначенная

Элементы теории сложности Машина Тьюринга Алан Тьюринг (23.06.1912-7.06.1954) (Alan Mathison Turing) Английский математик, логик, криптограф. В 1936 году предложил абстрактную вычислительную «Машина Тьюринга»,

Министерство образования и науки Российской Федерации Государственное образовательное учреждение профессионального образования Российской Федерации «Ростовский государственный университет» М. Э. Абрамян

10 КЛАСС 1. Действительные числа удовлетворяют соотношениям: Найдите все возможные тройки чисел, где Решение. Заметим, что Обозначим и Вычитая друг из друга эти равенства, получим Предположим, что все

Приложение к статье Горбунов К.Ю., Любецкий В.А. «Линейный алгоритм минимальной перестройки структур» Доказательство леммы 3. Жестким назовём блок, ограниченный с обеих сторон общими генами, полужёстким

Приложение 1 Практикум к главе 2 «Представление информации в компьютере» Практическая работа к п. 2.1 Пример 2.1. Представьте в виде разложения по степеням основания числа 2466,675 10, 1011,11 2. Для десятичного

Заочный физико-математический лицей «Авангард» Е. Н. Филатов АЛГЕБРА 8 Экспериментальный учебник Часть 1 МОСКВА 2016 СОДЕРЖАНИЕ 1. Делимость. 2. Чёт нечет 3. Множества. 4. Забавные задачи. 5. Комбинаторика

Задачник по информатике ученика (цы) 11 физико-математического класса средней школы 36 г.владимира Часть II 2016-2017 г. 2 1. Алгоритмизация. 1.1 Предлагается некоторая операция над двумя произвольными

Тема 7. Представление информации в ЭВМ.. Единицы информации. Бит - (bit-biry digit - двоичный разряд) наименьшая единица информации - количество её, необходимое для различения двух равновероятных событий.

И. В. Яковлев Материалы по математике MathUs.ru Содержание Десятичная запись 1 Всероссийская олимпиада школьников по математике................ 1 2 Московская математическая олимпиада........................

Тема 1: Системы линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров

Глава 5 Элементы теории алгоритмов 31 Уточнение понятия алгоритма Ключевые слова: алгоритм теория алгоритмов универсальный исполнитель машина Тьюринга машина Поста нормальный алгорифм Маркова Зачем нужно

Решение задач на тему «Представление чисел в компьютере». Типы задач. 1. Целые числа. Представление чисел в формате с фиксированной запятой. 2. Дробные числа. Представление чисел в формате с плавающей

А. Шень Игры и стратегии с точки зрения математики, МЦНМО Простые игры и классификация позиций На столе лежит 12 спичек. Играющие по очереди могут взять от одной до трёх спичек. Кто не может сделать ход

Теория алгоритмов 79 3.2. Нормальные алгоритмы j Пусть A алфавит, не содержащий символов. и. Обыкновенной формулой подстановок называется запись вида P Q, где P и Q некоторые слова в алфавите A. Заключительной

ЛЕКЦИЯ 2. Алгоритмы циклической структуры. Цель лекции: Знакомство с понятием алгоритма циклической струк туры. Приобретение навыков построения алгоритмов циклической с трук т уры. 5. Алгоритмы циклической

Лекции по Математике. Вып. ТММ-1 Ю. В. Чебраков ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ Санкт-Петербург, 2010 УДК 511+512 ББК 22 Ч345 Р е ц е н з е н т ы: Доктор физико-математических наук, профессор С.-Петерб. техн.

Практическая работа. Формы представления числовой информации на компьютере. Часть I. Системы счисления. Под системой счисления понимается способ представления любого числа с помощью некоторого алфавита

Московский физико-технический институт Факультет инноваций и высоких технологий Математическая логика и теория алгоритмов, осень 2018 Семинар 1: язык записи формальных утверждений, с решениями некоторых

Лекция 16. Универсальная машина Тьюринга Дискретная математика, ВШЭ, факультет компьютерных наук (Осень 2014 весна 2015) Важнейшим свойством вычислимых функций является существование универсальной вычислимой

16 (повышенный уровень, время мин) Тема: Кодирование чисел. Системы счисления. Что нужно знать: принципы кодирования чисел в позиционных системах счисления чтобы перевести число, скажем, 15, из системы

2015 Регулярные выражения Решения задач отборочного тура (два варианта) Вариант 1 Постройте регулярное выражение, описывающее множество слов из букв a и b, из которого удалены все слова, задаваемые регулярным

Машина Тьюринга - одно из самых интригующих и захватывающих интеллектуальных открытий 20-го века. Это простая и полезная абстрактная модель вычислений (компьютерных и цифровых), которая является достаточно общей для воплощения любой компьютерной задачи. Благодаря простому описанию и проведению математического анализа она образует фундамент теоретической информатики. Это исследование привело к более глубокому познанию цифровых компьютеров и исчислений, включая понимание того, что существуют некоторые вычислительные проблемы, не решаемые на общих пользовательских ЭВМ.

Алан Тьюринг стремился описать наиболее примитивную модель механического устройства, которая имела бы те же основные возможности, что и компьютер. Тьюринг впервые описал машину в 1936 году в статье "О вычислимых числах с приложением к проблеме разрешимости", которая появилась в Трудах Лондонского математического общества.

Машина Тьюринга является вычислительным устройством, состоящим из головки чтения/записи (или «сканера») с бумажной лентой, проходящей через него. Лента разделена на квадраты, каждый из которых несет одиночный символ - "0" или "1". Назначение механизма состоит в том, что он выступает и как средство для входа и выхода, и как рабочая память для хранения результатов промежуточных этапов вычислений. Из чего состоит устройство Каждая такая машина состоит из двух составляющих: Неограниченная лента. Она является бесконечной в обе стороны и разделена на ячейки. Автомат – управляемая программа, головка-сканер для считывания и записи данных. Она может находиться в каждый момент в одном из множества состояний.

Каждая машина связывает два конечных ряда данных: алфавит входящих символов A = {a0, a1, ..., am} и алфавит состояний Q = {q0, q1, ..., qp}. Состояние q0 называют пассивным. Считается, что устройство заканчивает свою работу, когда попадает именно на него. Состояние q1 называют начальным - машина начинает свои вычисления, находясь на старте в нем. Входное слово располагается на ленте по одной букве подряд в каждой позиции. С обеих сторон от него располагаются только пустые ячейки.

Как работает механизм

Машина Тьюринга имеет принципиальное отличие от вычислительных устройств – ее запоминающее приспособление имеет бесконечную ленту, тогда как у цифровых аппаратов такое устройство имеет полосу определенной длины. Каждый класс заданий решает только одна построенная машина Тьюринга. Задачи иного вида предполагают написание нового алгоритма. Управляющее устройство, находясь в одном состоянии, может передвигаться в любую сторону по ленте. Оно записывает в ячейки и считывает с них символы конечного алфавита. В процессе перемещения выделяется пустой элемент, который заполняет позиции, не содержащие входные данные. Алгоритм для машины Тьюринга определяет правила перехода для управляющего устройства. Они задают головке записи-чтения такие параметры: запись в ячейку нового символа, переход в новое состояние, перемещение влево или вправо по ленте.

Свойства механизма

Машина Тьюринга, как и другие вычислительные системы, имеет присущие ей особенности, и они сходны со свойствами алгоритмов: Дискретность. Цифровая машина переходит к следующему шагу n+1 только после того, как будет выполнен предыдущий. Каждый выполненный этап назначает, каким будет n+1. Понятность. Устройство выполняет только одно действие для одной же ячейки. Оно вписывает символ из алфавита и делает одно движение: влево или вправо. Детерминированность. Каждой позиции в механизме соответствует единственный вариант выполнения заданной схемы, и на каждом этапе действия и последовательность их выполнения однозначны. Результативность. Точный результат для каждого этапа определяет машина Тьюринга. Программа выполняет алгоритм и за конечное число шагов переходит в состояние q0. Массовость. Каждое устройство определено над допустимыми словами, входящими в алфавит. Функции машины Тьюринга В решении алгоритмов часто требуется реализация функции. В зависимости от возможности написания цепочки для вычисления, функцию называют алгоритмически разрешимой или неразрешимой. В качестве множества натуральных или рациональных чисел, слов в конечном алфавите N для машины рассматривается последовательность множества В – слова в рамках двоичного кодового алфавита В={0.1}. Также в результат вычисления учитывается «неопределенное» значение, которое возникает при «зависании» алгоритма. Для реализации функции важно наличие формального языка в конечном алфавите и решаемость задачи распознавания корректных описаний.-

Программа для устройства

Программы для механизма Тьюринга оформляются таблицами, в которых первые строка и столбец содержат символы внешнего алфавита и значения возможных внутренних состояний автомата - внутренний алфавит. Табличные данные являются командами, которые воспринимает машина Тьюринга. Решение задач происходит таким образом: буква, считываемая головкой в ячейке, над которой она в данный момент находится, и внутреннее состояние головки автомата обусловливают, какую из команд необходимо выполнять. Конкретно такая команда находится на пересечении символов внешнего алфавита и внутреннего, находящихся в таблице.

Составляющие для вычислений

Чтобы построить машину Тьюринга для решения одной определенной задачи, необходимо определить для нее следующие параметры. Внешний алфавит. Это некоторое конечное множество символов, обозначающихся знаком А, составляющие элементы которого именуются буквами. Один из них - а0 - должен быть пустым. Для примера, алфавит устройства Тьюринга, работающего с двоичными числами, выглядит так: A = {0, 1, а0}. Непрерывная цепочка букв-символов, записываемая на ленту, именуется словом. Автоматом называется устройство, которое работает без вмешательства людей. В машине Тьюринга он имеет для решения задач несколько различных состояний и при определенно возникающих условиях перемещается из одного положения в другое. Совокупность таких состояний каретки есть внутренний алфавит. Он имеет буквенное обозначение вида Q={q1, q2...}. Одно из таких положений - q1 - должно являться начальным, то есть тем, что запускает программу. Еще одним необходимым элементом является состояние q0, которое является конечным, то есть тем, что завершает программу и переводит устройство в позицию остановки.

Таблица переходов.

Эта составляющая представляет собой алгоритм поведения каретки устройства в зависимости от того, каковы в данный момент состояние автомата и значение считываемого символа.-

Алгоритм для автомата

Кареткой устройства Тьюринга во время работы управляет программа, которая во время каждого шага выполняет последовательность следующих действий: Запись символа внешнего алфавита в позицию, в том числе и пустого, осуществляя замену находившегося в ней, в том числе и пустого, элемента. Перемещение на один шаг-ячейку влево или же вправо. Изменение своего внутреннего состояния. Таким образом, при написании программ для каждой пары символов либо положений необходимо точно описать три параметра: ai – элемент из выбранного алфавита A, направление сдвига каретки ("←” влево, "→” вправо, "точка” - отсутствие перемещения) и qk - новое состояние устройства. К примеру, команда 1 "←” q2 имеет значение "заместить символ на 1, сдвинуть головку каретки влево на один шаг-ячейку и сделать переход в состояние q2”.