Стройка и ремонт - Информационный портал

Как работает тиристорный регулятор мощности. Тиристорные регуляторы напряжения. Простейший тиристорный регулятор

Тиристорные регуляторы мощности применяются как в быту (в аналоговых паяльных станциях, электронагревательных приборах и т.д.), так и на производстве (например, для запуска мощных силовых установок). В бытовых приборах, как правило, устанавливаются однофазные регуляторы, в промышленных установках чаще применяются трехфазные.

Эти устройства представляют собой электронную схему, работающую по принципу фазового регулирования, для управления мощностью в нагрузке (подробнее об этом методе будет рассказано ниже).

Принцип работы фазового регулирования

Принцип регулирования данного типа заключается в том, что импульс, открывающий тиристор, имеет определенную фазу. То есть, чем дальше он располагается от конца полупериода, тем большей амплитуды будет напряжение, поступающее на нагрузку. На рисунке ниже мы видим обратный процесс, когда импульсы поступают практически под окончание полупериода.

На графике показано время, когда тиристор закрыт t1 (фаза управляющего сигнала), как видите он открывается практически под конец полупериода синусоиды, в результате амплитуда напряжения минимальна, а следовательно, мощность в подключенной к прибору нагрузке будет незначительной (близкой к минимальной). Рассмотрим случай, представленный на следующем графике.


Здесь мы видим, что импульс, открывающий тиристор, приходится на середину полупериода, то есть регулятор будет выдавать половинную мощность от максимально возможной. Работа на мощности, близкой к максимальной, отображена на следующем графике.


Как видно из графика, импульс приходится на начало синусоидального полупериода. Время, когда тиристор находится в закрытом состоянии (t3) — незначительное, поэтому в данном случае мощность в нагрузке приближается к максимальной.

Заметим, что трехфазные регуляторы мощности работают по такому же принципу, но они управляют амплитудой напряжения не в одной, а сразу в трех фазах.

Такой метод регулирования прост в реализации и позволяет точно изменять амплитуду напряжения в диапазоне от 2 до 98 процентов от номинала. Благодаря этому становится возможным плавное управление мощностью электроустановок. Основной недостаток устройств данного типа — создание высокого уровня помех в электросети.

В качестве альтернативы, позволяющей сократить помехи, можно переключать тиристоры, когда синусоида переменного напряжения проходит через ноль. Наглядно работу такого регулятора мощности можно посмотреть на следующем графике.


Обозначения:

  • A – график полуволн переменного напряжения;
  • B – работа тиристора при 50% от максимальной мощности;
  • C – график, отображающий работу тиристора при 66%;
  • D – 75% от максимума.

Как видно из графика, тиристор «отрезает» полуволны, а не их части, что минимизирует уровень помех. Недостаток такой реализации – невозможность плавного регулирования, но для нагрузки с большой инерционностью (например, различных нагревательных элементов) этот критерий не основной.

Видео: Испытания тиристорного регулятора мощности

Схема простого регулятора мощности

Регулировать мощность паяльника можно используя для этой цели аналоговые или цифровые паяльные станции. Последние стоят достаточно дорого, и собрать их, не имея опыта, не просто. В то время как аналоговые устройства (являющиеся по сути регуляторами мощности) не составит труда сделать своими руками.

Приведем несложную схему прибора на тиристорах, благодаря которому можно регулировать мощность паяльника.


Радиоэлементы, обозначенные на схеме:

  • VD – КД209 (или близкий ему по характеристикам)
  • VS- KУ203В или его аналог;
  • R 1 – сопротивление с номиналом 15кОм;
  • R 2 – резистор переменного типа 30кОм;
  • С –емкость электролитического типа ч номиналом 4,7мкФ и напряжением от 50В;
  • R n – нагрузка (в нашем случае в качестве нее выступает паяльник).

Данное устройство регулирует только положительный полупериод, поэтому минимальная мощность паяльника будет вполовину меньше номинальной. Управляется тиристор через цепь, включающую в себя два сопротивления и емкость. Время зарядки конденсатора (оно регулируется сопротивлением R 2) влияет на длительность «открытия» тиристора. Ниже показан график работы устройства.


Пояснение к рисунку:

  • график A – показывает синусоиду переменного напряжения, поступающего на нагрузку Rn (паяльник) при сопротивлении R2 близком к 0 кОм;
  • график B – отображает амплитуду синусоиды поступающего на паяльник напряжения при сопротивлении R2 равном 15 кОм;
  • график C, как видно из него, при максимальном сопротивлении R2 (30 кОм) время работы тиристора (t 2) становится минимальным, то есть паяльник работает с мощностью примерно около 50% от номинальной.

Схема устройства довольно простая, поэтому собрать ее самостоятельно смогут даже те, кто не очень хорошо разбирается в схемотехнике. Необходимо предупредить, что при работе данного прибора в его цепи присутствует опасное для жизни человека напряжение, поэтому все его элементы должны быть надежно заизолированы.

Как уже описывалось выше, устройства, работающие по принципу фазового регулирования, являются источником сильных помех в электросети. Существует два варианта выхода из подобной ситуации:


Регулятор работающий без помех

Ниже представлена схема регулятора мощности, не создающего помехи, поскольку он не «обрезает» полуволны, а «отрезает» их определенное количество. Принцип работы такого устройства мы рассматривали в разделе «Принцип работы фазового регулирования», а именно, переключение тиристора через ноль.

Также как и в предыдущей схеме, регулировка мощности происходит в диапазоне от 50 процентов до величины близкой к максимальной.


Перечень используемых в приборе радиоэлементов, а также варианты их замены:

Тиристор VS – КУ103В;

Диоды:

VD 1 -VD 4 – КД209 (в принципе можно использовать любые аналоги, которые допускают величину обратного напряжения более 300В, а ток свыше 0,5А); VD 5 и VD 7 – КД521 (допускается ставить любой диод импульсного типа); VD 6 – KC191 (можно использовать аналог с напряжением стабилизации равным 9В)

Конденсаторы:

С 1 – электролитического типа с емкостью 100мкФ, рассчитанный на напряжение не менее 16В; С 2 – 33Н; С 3 – 1мкФ.

Резисторы:

R 1 и R 5 – 120кОм; R 2 -R 4 – 12кОм; R 6 – 1кОм.

Микросхемы:

DD1 — K176 ЛЕ5 (или ЛА7); DD2 –K176TM2. В качестве альтернативы можно использовать логику серии 561;

R n – паяльник, подключенный в качестве нагрузки.

Если при сборке тиристорного регулятора мощности не было допущено ошибок, то устройство начинает работать сразу после включения, настройка для него не требуется. Имея возможность измерить температуру жала паяльника, можно сделать градацию шкалы для резистора R 5 .

В том случае, когда устройство не заработало, рекомендуем проверить правильность распайки радиоэлементов (не забудьте перед этим отключить его от сети).

Тиристорные регуляторы мощности являются одной из самых распространенных радиолюбительских конструкций, и в этом нет ничего удивительного. Ведь всем, кто когда-нибудь пользовался обычным 25 - 40 ваттным паяльником, способность его к перегреванию даже очень известна. Паяльник начинает дымить и шипеть, потом, достаточно скоро, облуженное жало выгорает, становится черным. Паять таким паяльником уже совсем невозможно.

И вот тут на помощь и приходит регулятор мощности, с помощью которого можно достаточно точно выставить температуру для пайки. Ориентироваться следует на то, чтобы при касании паяльником куска канифоли она дымила ну, так, средне, без шипения и брызг, не очень энергично. Ориентироваться следует на то, чтобы пайка получалась контурной, блестящей.

Чтобы не усложнять рассказ, не будем рассматривать тиристор в виде его четырехслойной p-n-p-n структуры, рисовать вольтамперную характеристику, а просто на словах опишем, как же он, тиристор, работает. Для начала в цепи постоянного тока, хотя в этих цепях тиристоры почти не применяются. Ведь выключить тиристор, работающий на постоянном токе достаточно сложно. Все равно, что коня на скаку остановить.

И все же большие токи и высокие напряжения тиристоров привлекают разработчиков различной, как правило, достаточно мощной аппаратуры постоянного тока. Для выключения тиристоров приходится идти на различные усложнения схем, ухищрения, но в целом результаты получаются положительными.

Обозначение тиристора на принципиальных схемах показано на рисунке 1.

Рисунок 1. Тиристор

Нетрудно заметить, что по своему обозначению на схемах, тиристор очень похож на . Если разобраться, то он, тиристор, тоже обладает односторонней проводимостью, а следовательно, может выпрямлять переменный ток. Вот только делать это он будет лишь в том случае, когда на управляющий электрод подано относительно катода положительное напряжение, как показано на рисунке 2. По старой терминологии тиристор иногда называли управляемым диодом. Покуда не подан управляющий импульс, тиристор закрыт в любом направлении.

Рисунок 2.

Как включить светодиод

Здесь все очень просто. К источнику постоянного напряжения 9В (можно использовать батарейку «Крона») через тиристор Vsx подключен светодиод HL1 с ограничительным резистором R3. С помощью кнопки SB1 напряжение с делителя R1, R2 может быть подано на управляющий электрод тиристора, и тогда тиристор откроется, светодиод начинает светиться.

Если теперь отпустить кнопку, перестать ее удерживать в нажатом состоянии, то светодиод должен продолжать светиться. Такое кратковременное нажатие на кнопку можно назвать импульсным. Повторное и даже многократное нажатие этой кнопки ничего не изменит: светодиод не погаснет, но и не станет светить ярче или тусклее.

Нажали - отпустили, а тиристор остался в открытом состоянии. Причем, это состояние является устойчивым: тиристор будет открыт до тех пор, пока из этого состояния его не выведут внешние воздействия. Такое поведение схемы говорит об исправном состоянии тиристора, его пригодности для работы в разрабатываемом или ремонтируемом устройстве.

Маленькое замечание

Но из этого правила часто случаются исключения: кнопку нажали, светодиод зажегся, а когда кнопку отпустили, то погас, как, ни в чем не бывало. И в чем же тут подвох, что сделали не так? Может кнопку нажимали недостаточно долго или не очень фанатично? Нет, все было сделано достаточно добросовестно. Просто ток через светодиод оказался меньше, чем ток удержания тиристора.

Чтобы описанный опыт прошел удачно, надо просто заменить светодиод лампой накаливания, тогда ток станет больше, либо подобрать тиристор с меньшим током удержания. Этот параметр у тиристоров имеет значительный разброс, иногда даже приходится тиристор для конкретной схемы подбирать. Причем одной марки, с одной буквой и из одной коробки. Несколько лучше с этим током у импортных тиристоров, которым в последнее время отдается предпочтение: и купить проще, и параметры лучше.

Как закрыть тиристор

Никакие сигналы, поданные на управляющий электрод, закрыть тиристор и погасить светодиод не смогут: управляющий электрод может только включить тиристор. Существуют, конечно, запираемые тиристоры, но их назначение несколько иное, чем банальные регуляторы мощности или простые выключатели. Обычный тиристор можно выключить лишь только прервав ток через участок анод - катод.

Сделать это можно, как минимум, тремя способами. Во-первых, тупо отключить всю схему от батарейки. Вспоминаем рисунок 2. Естественно, что светодиод погаснет. Но при повторном подключении он сам по себе не включится, поскольку тиристор остался в закрытом состоянии. Это состояние также является устойчивым. И вывести его из этого состояния, Зажечь свет, поможет только нажатие кнопки SB1.

Второй способ прервать ток через тиристор это просто взять и замкнуть выводы катода и анода проволочной перемычкой. При этом весь ток нагрузки, в нашем случае это всего - лишь светодиод, потечет через перемычку, а ток через тиристор будет равен нулю. После того, как перемычка будет убрана, тиристор закроется, и светодиод погаснет. При опытах с подобными схемами в качестве перемычки чаще всего используется пинцет.

Предположим, что вместо светодиода в этой схеме будет достаточно мощная нагревательная спираль с большой тепловой инерцией. Тогда получается практически готовый регулятор мощности. Если коммутировать тиристор таким образом, что на 5 секунд спираль включена и столько же времени выключена, то в спирали выделяется 50-ти процентная мощность. Если же за время этого десятисекундного цикла включение производится лишь на 1 секунду, то совершенно очевидно, что спираль выделит только 10% тепла от своей мощности.

Примерно с такими временными циклами, измеряемыми в секундах, работает регулировка мощности в микроволновой печи. Просто с помощью реле включается и выключается ВЧ излучение. Тиристорные регуляторы работают на частоте питающей сети, где время измеряется уже миллисекундами.

Третий способ выключения тиристора

Состоит в том, чтобы до нуля уменьшить напряжение питания нагрузки, а то и вовсе изменить полярность питающего напряжения на противоположную. Именно такая ситуация получается при питании тиристорных схем переменным синусоидальным током.

При переходе синусоиды через нуль, она меняет знак на противоположный, поэтому ток через тиристор становится меньше тока удержания, а затем и вовсе равным нулю. Таким образом, проблема выключения тиристора решается как бы сама собой.

Тиристорные регуляторы мощности. Фазовое регулирование

Итак, дело осталось за малым. Чтобы получилось фазовое регулирование, надо просто в определенное время подать управляющий импульс. Другими словами импульс должен иметь определенную фазу: чем ближе он будет расположен к концу полупериода переменного напряжения, тем меньшая амплитуда напряжения окажется на нагрузке. Фазовый способ регулирования показан на рисунке 3.

Рисунок 3. Фазовое регулирование

В верхнем фрагменте картинки управляющий импульс подается почти в самом начале полупериода синусоиды, фаза управляющего сигнала близка к нулю. На рисунке это время t1, поэтому тиристор открывается почти в начале полупериода, а в нагрузке выделяется мощность близкая к максимальной (если бы в цепи не было тиристоров, мощность была бы максимальной).

Сами управляющие сигналы на этом рисунке не показаны. В идеальном варианте они представляют собой короткие положительные относительно катода импульсы, поданные в определенной фазе на управляющий электрод. В простейших схемах это может быть линейно нарастающее напряжение, получаемое при заряде конденсатора. Об этом будет рассказано несколько ниже.

На среднем графике управляющий импульс подается в средине полупериода, что соответствует фазовому углу Π/2 или моменту времени t2, поэтому в нагрузке выделяется лишь половина максимальной мощности.

На нижнем графике открывающие импульсы подаются очень близко к окончанию полупериода, тиристор открывается почти перед тем, как ему предстоит закрыться, по графику это время обозначено как t3, соответственно мощность в нагрузке выделяется незначительная.

Схемы включения тиристоров

После краткого рассмотрения принципа работы тиристоров, наверное, можно привести несколько схем регуляторов мощности . Нового здесь ничего не изобретено, все можно найти в сети Интернет или в старых радиотехнических журналах. Просто в статье приводится краткий обзор и описание работы схем тиристорных регуляторов . При описании работы схем будет обращаться внимание на то, каким образом используются тиристоры, какие существуют схемы включения тиристоров.

Как было сказано в самом начале статьи, тиристор выпрямляет переменное напряжение как обычный диод. Получается однополупериодное выпрямление. Когда-то именно так, через диод, включались лампы накаливания на лестничных клетках: света совсем чуть, в глазах рябит, но зато лампы перегорают очень редко. То же самое получится, если светорегулятор выполнить на одном тиристоре, только появляется еще возможность регулирования уже и так незначительной яркости.

Поэтому регуляторы мощности управляют обоими полупериодами сетевого напряжения. Для этого применяется встречно - параллельное включение тиристоров, или включение тиристора в диагональ выпрямительного моста.

Для наглядности этого утверждения далее будут рассмотрены несколько схем тиристорных регуляторов мощности. Иногда их называют регуляторами напряжения, и какое название вернее, решить трудно, ведь вместе с регулированием напряжения регулируется и мощность.

Простейший тиристорный регулятор

Он предназначен для регулирования мощности паяльника. Его схема показана на рисунке 4.

Рисунок 4. Схема простейшего тиристорного регулятора мощности

Регулировать мощность паяльника, начиная от нуля, нет никакого смысла. Поэтому можно ограничиться регулированием только одного полупериода сетевого напряжения, в данном случае положительного. Отрицательный полупериод проходит без изменений через диод VD1 сразу на паяльник, что обеспечивает его половинную мощность.

Положительный полупериод проходит через тиристор VS1, позволяющий осуществлять регулирование. Цепь управления тиристором предельно проста. Это резисторы R1, R2 и конденсатор C1. Конденсатор заряжается по цепи: верхний провод схемы, R1, R2 и конденсатор C1, нагрузка, нижний провод схемы.

К плюсовому выводу конденсатора подключен управляющий электрод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, последний открывается, пропуская в нагрузку положительный полупериод напряжения, вернее его часть. Конденсатор C1 при этом, естественно, разряжается, тем самым подготавливаясь к следующему циклу.

Скорость заряда конденсатора регулируется с помощью переменного резистора R1. Чем быстрее конденсатор зарядится до напряжения открывания тиристора, тем раньше тиристор откроется, тем большая часть положительного полупериода напряжения поступит в нагрузку.

Схема простая, надежная, для паяльника вполне подходит, хотя регулирует лишь один полупериод сетевого напряжения. Очень похожая схема показана на рисунке 5.

Рисунок 5. Тиристорный регулятор мощности

Она несколько сложней предыдущей, но позволяет осуществлять регулировку более плавно и точно, благодаря тому, что схема формирования управляющих импульсов собрана на двухбазовом транзисторе КТ117. Этот транзистор предназначен для создания генераторов импульсов. Больше, кажется, ни на что другое не способен. Подобная схема используется во многих регуляторах мощности, а также в импульсных блоках питания в качестве формирователя запускающего импульса.

Как только напряжение на конденсаторе C1 достигает порога срабатывания транзистора, последний открывается и на выводе Б1 появляется положительный импульс, открывающий тиристор VS1. Резистором R1 можно регулировать скорость заряда конденсатора.

Чем быстрее зарядится конденсатор, тем раньше появится открывающий импульс, тем большее напряжение поступит в нагрузку. Вторая полуволна сетевого напряжения проходит в нагрузку через диод VD3 без изменений. Для питания схемы формирователя управляющих импульсов используется выпрямитель VD2, R5, стабилитрон VD1.

Тут можно спросить, а когда же откроется транзистор, каков же порог срабатывания? Открывание транзистора происходит в тот момент, когда напряжение на его эмиттере Э превысит напряжение на базе Б1. Базы Б1 и Б2 не равноценны, если их поменять местами, то генератор не заработает.

На рисунке 6 показана схема, позволяющая регулировать оба полупериода напряжения.

Рисунок 6.

Тиристорные регуляторы мощности применяются как в быту (в аналоговых паяльных станциях, электронагревательных приборах и т.д.), так и на производстве (например, для запуска мощных силовых установок). В бытовых приборах, как правило, устанавливаются однофазные регуляторы, в промышленных установках чаще применяются трехфазные.

Эти устройства представляют собой электронную схему, работающую по принципу фазового регулирования, для управления мощностью в нагрузке (подробнее об этом методе будет рассказано ниже).

Принцип работы фазового регулирования

Принцип регулирования данного типа заключается в том, что импульс, открывающий тиристор, имеет определенную фазу. То есть, чем дальше он располагается от конца полупериода, тем большей амплитуды будет напряжение, поступающее на нагрузку. На рисунке ниже мы видим обратный процесс, когда импульсы поступают практически под окончание полупериода.

На графике показано время, когда тиристор закрыт t1 (фаза управляющего сигнала), как видите он открывается практически под конец полупериода синусоиды, в результате амплитуда напряжения минимальна, а следовательно, мощность в подключенной к прибору нагрузке будет незначительной (близкой к минимальной). Рассмотрим случай, представленный на следующем графике.


Здесь мы видим, что импульс, открывающий тиристор, приходится на середину полупериода, то есть регулятор будет выдавать половинную мощность от максимально возможной. Работа на мощности, близкой к максимальной, отображена на следующем графике.


Как видно из графика, импульс приходится на начало синусоидального полупериода. Время, когда тиристор находится в закрытом состоянии (t3) — незначительное, поэтому в данном случае мощность в нагрузке приближается к максимальной.

Заметим, что трехфазные регуляторы мощности работают по такому же принципу, но они управляют амплитудой напряжения не в одной, а сразу в трех фазах.

Такой метод регулирования прост в реализации и позволяет точно изменять амплитуду напряжения в диапазоне от 2 до 98 процентов от номинала. Благодаря этому становится возможным плавное управление мощностью электроустановок. Основной недостаток устройств данного типа — создание высокого уровня помех в электросети.

В качестве альтернативы, позволяющей сократить помехи, можно переключать тиристоры, когда синусоида переменного напряжения проходит через ноль. Наглядно работу такого регулятора мощности можно посмотреть на следующем графике.


Обозначения:

  • A – график полуволн переменного напряжения;
  • B – работа тиристора при 50% от максимальной мощности;
  • C – график, отображающий работу тиристора при 66%;
  • D – 75% от максимума.

Как видно из графика, тиристор «отрезает» полуволны, а не их части, что минимизирует уровень помех. Недостаток такой реализации – невозможность плавного регулирования, но для нагрузки с большой инерционностью (например, различных нагревательных элементов) этот критерий не основной.

Видео: Испытания тиристорного регулятора мощности

Схема простого регулятора мощности

Регулировать мощность паяльника можно используя для этой цели аналоговые или цифровые паяльные станции. Последние стоят достаточно дорого, и собрать их, не имея опыта, не просто. В то время как аналоговые устройства (являющиеся по сути регуляторами мощности) не составит труда сделать своими руками.

Приведем несложную схему прибора на тиристорах, благодаря которому можно регулировать мощность паяльника.


Радиоэлементы, обозначенные на схеме:

  • VD – КД209 (или близкий ему по характеристикам)
  • VS- KУ203В или его аналог;
  • R 1 – сопротивление с номиналом 15кОм;
  • R 2 – резистор переменного типа 30кОм;
  • С –емкость электролитического типа ч номиналом 4,7мкФ и напряжением от 50В;
  • R n – нагрузка (в нашем случае в качестве нее выступает паяльник).

Данное устройство регулирует только положительный полупериод, поэтому минимальная мощность паяльника будет вполовину меньше номинальной. Управляется тиристор через цепь, включающую в себя два сопротивления и емкость. Время зарядки конденсатора (оно регулируется сопротивлением R 2) влияет на длительность «открытия» тиристора. Ниже показан график работы устройства.


Пояснение к рисунку:

  • график A – показывает синусоиду переменного напряжения, поступающего на нагрузку Rn (паяльник) при сопротивлении R2 близком к 0 кОм;
  • график B – отображает амплитуду синусоиды поступающего на паяльник напряжения при сопротивлении R2 равном 15 кОм;
  • график C, как видно из него, при максимальном сопротивлении R2 (30 кОм) время работы тиристора (t 2) становится минимальным, то есть паяльник работает с мощностью примерно около 50% от номинальной.

Схема устройства довольно простая, поэтому собрать ее самостоятельно смогут даже те, кто не очень хорошо разбирается в схемотехнике. Необходимо предупредить, что при работе данного прибора в его цепи присутствует опасное для жизни человека напряжение, поэтому все его элементы должны быть надежно заизолированы.

Как уже описывалось выше, устройства, работающие по принципу фазового регулирования, являются источником сильных помех в электросети. Существует два варианта выхода из подобной ситуации:


Регулятор работающий без помех

Ниже представлена схема регулятора мощности, не создающего помехи, поскольку он не «обрезает» полуволны, а «отрезает» их определенное количество. Принцип работы такого устройства мы рассматривали в разделе «Принцип работы фазового регулирования», а именно, переключение тиристора через ноль.

Также как и в предыдущей схеме, регулировка мощности происходит в диапазоне от 50 процентов до величины близкой к максимальной.


Перечень используемых в приборе радиоэлементов, а также варианты их замены:

Тиристор VS – КУ103В;

Диоды:

VD 1 -VD 4 – КД209 (в принципе можно использовать любые аналоги, которые допускают величину обратного напряжения более 300В, а ток свыше 0,5А); VD 5 и VD 7 – КД521 (допускается ставить любой диод импульсного типа); VD 6 – KC191 (можно использовать аналог с напряжением стабилизации равным 9В)

Конденсаторы:

С 1 – электролитического типа с емкостью 100мкФ, рассчитанный на напряжение не менее 16В; С 2 – 33Н; С 3 – 1мкФ.

Резисторы:

R 1 и R 5 – 120кОм; R 2 -R 4 – 12кОм; R 6 – 1кОм.

Микросхемы:

DD1 — K176 ЛЕ5 (или ЛА7); DD2 –K176TM2. В качестве альтернативы можно использовать логику серии 561;

R n – паяльник, подключенный в качестве нагрузки.

Если при сборке тиристорного регулятора мощности не было допущено ошибок, то устройство начинает работать сразу после включения, настройка для него не требуется. Имея возможность измерить температуру жала паяльника, можно сделать градацию шкалы для резистора R 5 .

В том случае, когда устройство не заработало, рекомендуем проверить правильность распайки радиоэлементов (не забудьте перед этим отключить его от сети).

Испытанная временем схема регулирования тока мощных потребителей отличается простотой в наладке, надежностью в эксплуатации и широкими потребительскими возможностями. Она хорошо подходит для управления режимом сварки, для пуско-зарядных устройств и для мощных узлов автоматики.

Принципиальная схема

При питании мощных нагрузок постоянным током часто применяется схема (рис.1) выпрямителя на четырех силовых вентилях. Переменное напряжение подводится к одной диагонали "моста", выходное постоянное (пульсирующее) напряжение снимается с другой диагонали. В каждом полупериоде работает одна пара диодов (VD1-VD4 или VD2-VD3).

Это свойство выпрямительного "моста" существенно: суммарная величина выпрямленного тока может достигать удвоенной величины предельного тока для каждого диода. Предельное напряжение диода не должно быть ниже амплитудного входного напряжения.

Поскольку класс напряжения силовых вентилей доходит до четырнадцатого (1400 В), с этим для бытовой электросети проблем нет. Существующий запас по обратному напряжению позволяет использовать вентили с некоторым перегревом, с малыми радиаторами (не злоупотреблять!).

Рис. 1. Схема выпрямителя на четырех силовых вентилях.

Внимание! Силовые диоды с маркировкой "В" проводят ток, "подобно" диодам Д226 (от гибкого вывода к корпусу), диоды с маркировкой "ВЛ" - от корпуса к гибкому выводу.

Использование вентилей различной проводимости позволяет выполнить монтаж всего на двух двойных радиаторах. Если же с корпусом устройства соединить "корпуса" вентилей "ВЛ" (выход "минус"), то останется изолировать всего один радиатор, на котором установлены диоды с маркировкой "В". Такая схема проста в монтаже и "наладке", но возникают трудности, если приходится регулировать ток нагрузки.

Если со сварочным процессом все понятно (присоединять "балласт"), то с пусковым устройством возникают огромные проблемы. После пуска двигателя огромный ток не нужен и вреден, поэтому необходимо его быстро отключить, так как каждое промедление укорачивает срок службы батареи (нередко батареи взрываются!).

Очень удобна для практического исполнения схема, показанная на рис.2, в которой функции регулирования тока выполняют тиристоры VS1, VS2, в этот же выпрямительный мост включены силовые вентили VD1, VD2. Монтаж облегчается тем, что каждая пара "диод-тиристор" крепится на своем радиаторе. Радиаторы можно применить стандартные (промышленного изготовления).

Другой путь - самостоятельное изготовление радиаторов из меди, алюминия толщиной свыше 10 мм. Для подбора размеров радиаторов необходимо собрать макет устройства и "погонять" его в тяжелом режиме. Неплохо, если после 15-минутной нагрузки корпуса тиристоров и диодов не будут "обжигать" руку (напряжение в этот момент отключить!).

Корпус устройства необходимо выполнить так, чтобы обеспечивалась хорошая циркуляция нагретого устройством воздуха. Не помешает установка вентилятора, который "помогает" прогонять воздух снизу вверх. Удобны вентиляторы, устанавливаемые в стойках с компьютерными платами либо в "советских" игровых автоматах.

Рис. 2. Схема регулятора тока на тиристорах.

Возможно выполнение схемы регулируемого выпрямителя полностью на тиристорах (рис.3). Нижняя (по схеме) пара тиристоров VS3, VS4 запускается импульсами от блока управления.

Импульсы приходят одновременно на управляющие электроды обоих тиристоров. Такое построение схемы "диссонирует" с принципами надежности, но время подтвердило работоспособность схемы ("сжечь" тиристоры бытовая электросеть не может, поскольку они выдерживают импульсный ток 1600 А).

Тиристор VS1 (VS2) включен как диод - при положительном напряжении на аноде тиристора через диод VD1 (или VD2) и резистор R1 (или R2) на управляющий электрод тиристора будет подан отпирающий ток. Уже при напряжении в несколько вольт тиристор откроется и до окончания полуволны тока будет проводить ток.

Второй тиристор, на аноде которого было отрицательное напряжение, не будет запускаться (это и не нужно). На тиристоры VS3 и VS4 из схемы управления приходит импульс тока. Величина среднего тока в нагрузке зависит от моментов открывания тиристоров - чем раньше приходит открывающий импульс, тем большую часть периода соответствующий тиристор будет открыт.

Рис. 3. Схемы регулируемого выпрямителя полностью на тиристорах.

Открывание тиристоров VS1, VS2 через резисторы несколько "притупляет" схему: при низких входных напряжениях угол открытого состояния тиристоров оказывается малым - в нагрузку проходит заметно меньший ток, чем в схеме с диодами (рис.2).

Таким образом, данная схема вполне пригодна для регулировки сварочного тока по "вторичке" и выпрямления сетевого напряжения, где потеря нескольких вольт несущественна.

Эффективно использовать тиристорный мост для регулирования тока в широком диапазоне питающих напряжений позволяет схема, показанная на рис.4,

Устройство состоит из трех блоков:

  1. силового;
  2. схемы фазоимпульсного регулирования;
  3. двухпредельного вольтметра.

Трансформатор Т1 мощностью 20 Вт обеспечивает питание блока управления тиристорами VS3 и VS4 и открывание "диодов" VS1 и VS2. Открывание тиристоров внешним блоком питания эффективно при низком (автомобильном) напряжении в силовой цепи, а также при питании индуктивной нагрузки.

Рис. 4. Тиристорный мост для регулировки тока в широком диапазоне.

Рис. 5. Принципиальная схема блока управления тиристорами.

Открывающие импульсы тока с 5-вольтовых обмоток трансформатора подводятся в противофазе к управляющим электродам VS1, VS2. Диоды VD1, VD2 пропускают к управляющим электродам только положительные полуволны тока.

Если фазировка открывающих импульсов "подходит", то тиристорный выпрямительный мост будет работать, иначе тока в нагрузке не будет.

Этот недостаток схемы легко устраним: достаточно повернуть наоборот сетевую вилку питания Т1 (и пометить краской, как нужно подключать вилки и клеммы устройств в сеть переменного тока). При использовании схемы в пуско-зарядном устройстве заметно увеличение отдаваемого тока по сравнению со схемой рис.3.

Очень выгодно наличие слаботочной цепи (сетевого трансформатора Т1). Разрывание тока выключателем S1 полностью обесточивает нагрузку. Таким образом, прервать пусковой ток можно маленьким концевым выключателем, автоматическим выключателем или слаботочным реле (добавив узел автоматического отключения).

Это очень существенный момент, поскольку разрывать сильноточные цепи, требующие для прохождения тока хорошего контакта, намного труднее. Мы не случайно вспомнили о фазировке трансформатора Т1. Если бы регулятор тока был "встроен" в зарядно-пусковое устройство или в схему сварочного аппарата, то проблема фазировки была бы решена в момент наладки основного устройства.

Наше устройство специально выполнено широкопрофильным (как пользование пусковым устройством определяется сезоном года, так и сварочные работы приходится вести нерегулярно). Приходится управлять режимом работы мощной электродрели и питать нихромовые обогреватели.

На рис.5 показана схема блока управления тиристорами. Выпрямительный мостик VD1 подает в схему пульсирующее напряжение от 0 до 20 В. Это напряжение через диод VD2 подводится к конденсатору С1, обеспечивается постоянное напряжение питания мощного транзисторного "ключа" на VT2, VT3.

Пульсирующее напряжение через резистор R1 подводится к параллельно соединенным резистору R2 и стабилитрону VD6. Резистор "привязывает" потенциал точки "А" (рис.6) к нулевому, а стабилитрон ограничивает вершины импульсов на уровне порога стабилизации. Ограниченные импульсы напряжения заряжают конденсатор С2 для питания микросхемы DD1.

Эти же импульсы напряжения воздействуют на вход логического элемента. При некотором пороге напряжения логический элемент переключается. С учетом инвертирования сигнала на выходе логического элемента (точка "В") импульсы напряжения будут кратковременными -около момента нулевого входного напряжения.

Рис. 6. Диаграмма импульсов.

Следующий элемент логики инвертирует напряжение "В", поэтому импульсы напряжения "С" имеют значительно большую длительность. Пока действует импульс напряжения "С", через резисторы R3 и R4 происходит заряд конденсатора C3.

Экспоненциально нарастающее напряжение в точке "Е", в момент перехода через логический порог, "переключает" логический элемент. После инвертирования вторым логическим элементом высокому входному напряжению точки "Е" соответствует высокое логическое напряжение в точке "F".

Двум различным величинам сопротивления R4 соответствуют две осциллограммы в точке "Е":

  • меньшее сопротивление R4 - большая крутизна - Е1;
  • большее сопротивление R4 - меньшая крутизна - Е2.

Следует обратить внимание также на питание базы транзистора VT1 сигналом "В", во время снижения входного напряжения до нуля транзистор VT1 открывается до насыщения, коллекторный переход транзистора разряжает конденсатор С3 (происходит подготовка к зарядке в следующем полупериоде напряжения). Таким образом, логический высокий уровень появляется в точке "F" раньше или позже, в зависимости от сопротивления R4:

  • меньшее сопротивление R4 - раньше появляется импульс - F1;
  • большее сопротивление R4 - позже появляется импульс - F2.

Усилитель на транзисторах VT2 и VT3 "повторяет" логические сигналы -точка "G". Осциллограммы в этой точке повторяют F1 и F2, но величина напряжения достигает 20 В.

Через разделительные диоды VD4, VD5 и ограничительные резисторы R9 R10 импульсы тока воздействуют на управляющие электроды тиристоров VS3 VS4 (рис.4). Один из тиристоров открывается, и на выход блока проходит импульс выпрямленного напряжения.

Меньшему значению сопротивления R4 соответствует большая часть полупериода синусоиды - H1, большему - меньшая часть полупериода синусоиды - H2 (рис.4). В конце полупериода ток прекращается, и все тиристоры закрываются.

Рис. 7. Схема автоматического двухпредельного вольтметра.

Таким образом, различным величинам сопротивления R4 соответствует различная длительность "отрезков" синусоидального напряжения на нагрузке. Выходную мощность можно регулировать практически от 0 до 100%. Стабильность работы устройства определяется применением "логики" - пороги переключения элементов стабильны.

Конструкция и налаживание

Если ошибок в монтаже нет, то устройство работает стабильно. При замене конденсатора С3 потребуется подбор резисторов R3 и R4. Замена тиристоров в силовом блоке может потребовать подбора R9, R10 (бывает, даже силовые тиристоры одного типа резко отличаются по токам включения - приходится менее чувствительный отбраковывать).

Измерять напряжение на нагрузке можно каждый раз "подходящим" вольтметром. Исходя из мобильности и универсальности блока регулирования, мы применили автоматический двухпредельный вольтметр (рис.7).

Измерение напряжения до 30 В производится головкой PV1 типа М269 с добавочным сопротивлением R2 (регулируется отклонение на всю шкалу при 30 В входного напряжения). Конденсатор С1 необходим для сглаживания напряжения, подводимого к вольтметру.

Для "загрубления" шкалы в 10 раз служит остальная часть схемы. Через лампу накаливания (бареттер) HL3 и подстроечный резистор R3 запитывается лампа накаливания оптопары U1, стабилитрон VD1 защищает вход оптрона.

Большое входное напряжение приводит к снижению сопротивления резистора оптопары от мегаом до ки-лоом, транзистор VT1 открывается, реле К1 срабатывает. Контакты реле при этом выполняют две функции:

  • размыкают подстроечное сопротивление R1 - схема вольтметра переключается на высоковольтный предел;
  • вместо зеленого светодиода HL2 включается красный светодиод HL1.

Красный, более заметный, цвет специально выбран для шкалы больших напряжений.

Внимание! Подстройка R1(шкала 0...300) производится после подстройки R2.

Питание к схеме вольтметра взято из блока управления тиристорами. Развязка от измеряемого напряжения осуществлена с помощью оптрона. Порог переключения оптрона можно установить немного выше 30 В, что облегчит подстройку шкал.

Диод VD2 необходим для защиты транзистора от всплесков напряжения в момент обесточивания реле. Автоматическое переключение шкал вольтметра оправдано при использовании блока для питания различных нагрузок. Нумерация выводов оптрона не дана: с помощью тестера нетрудно различить входные и выходные выводы.

Сопротивление лампы оптрона равно сотням ом, а фоторезистора - мегаом (в момент измерения лампа не запитана). На рис.8 показан вид устройства сверху (крышка снята). VS1 и VS2 установлены на общем радиаторе, VS3 и VS4 - на отдельных радиаторах.

Резьбу на радиаторах пришлось нарезать под тиристоры. Гибкие выводы силовых тиристоров обрезаны, монтаж осуществлен более тонким проводом.

Рис. 8. Вид устройства сверху.

На рис.9 показан вид на лицевую панель устройства. Слева расположена ручка регулирования тока нагрузки, справа - шкала вольтметра. Около шкалы закреплены светодиоды, верхний (красный) расположен около надписи "300 В".

Клеммы устройства не очень мощные, так как применяется оно для сварки тонких деталей, где очень важна точность поддержания режима. Время пуска двигателя небольшое, поэтому ресурса клеммных соединений хватает.

Рис. 9. Вид на лицевую панель устройства.

Верхняя крышка крепится к нижней с зазором в пару сантиметров для обеспечения лучшей циркуляции воздуха.

Устройство легко поддается модернизации. Так, для автоматизации режима запуска двигателя автомобиля не нужны дополнительные детали (рис.10).

Необходимо между точками "D" и "E" блока управления включить нормально замкнутую контактную группу реле К1 из схемы двухпредельного вольтметра. Если перестройкой R3 не удастся довести порог переключения вольтметра до 12...13 В, то придется заменить лампу HL3 более мощной (вместо 10 установить 15 Вт).

Пусковые устройства промышленного изготовления настраиваются на порог включения даже 9 В. Мы рекомендуем настраивать порог переключения устройства на более высокое напряжение, так как еще до включения стартера аккумулятор немного подпитывается током (до уровня переключения). Теперь пуск производится немного "подзаряженным" аккумулятором вместе с автоматическим пусковым устройством.

Рис. 10 . Автоматизация режима запуска двигателя автомобиля.

По мере увеличения бортового напряжения автоматика "закрывает" подачу тока от пускового устройства, при повторных пусках в нужные моменты подпитка возобновляется. Имеющийся в устройстве регулятор тока (скважности выпрямленных импульсов) позволяет ограничить величину пускового тока.

Н.П. Горейко, В.С. Стовпец. г. Ладыжин. Винницкая обл. Электрик-2004-08.

Из-за использования в повседневной жизни большого количества электрических приборов (микроволновок, электрочайников, компьютеров и т.д.) нередко возникает необходимость регулировки их мощностей. Для этого применяют регулятор напряжения на тиристоре. Оно имеет простую конструкцию, поэтому собрать его самостоятельно несложно.

Нюансы в конструкции

Регулятор напряжения на тиристоре

Тиристор – это управляемый полупроводник. При необходимости он может очень быстро провести ток в нужном направлении. От привычных диодов устройство отличается тем, что имеет возможность контролировать момент подачи напряжения.

Регулятор состоит из трех компонентов:

  • катод – проводник, подключаемый к отрицательному полюсу источника питания;
  • анод – элемент, присоединяемый к положительному полюсу;
  • управляемый электрод (модулятор), который полностью охватывает катод.

Регулятор функционирует при соблюдении нескольких условий:

  • тиристор должен попадать в схему под общее напряжение;
  • модулятор должен получать кратковременный импульс, позволяющий устройству контролировать мощность электроприбора. В отличие от транзистора регулятору не требуется удержание этого сигнала.

Тиристор не применяется в схемах с постоянным током, поскольку он закрывается, если нет напряжения в цепи. В то же время в приборах с переменным током регистр необходим. Это связано с тем, что в подобных схемах имеется возможность полностью закрыть полупроводниковый элемент. С этим справится любая полуволна, если возникнет такая потребность.

Тиристор обладает двумя устойчивыми положениями («открыто» или «закрыто»), которые переключаются при помощи напряжения. При появлении нагрузки он включается, при пропадании электрического тока выключается. Собирать подобные регуляторы учат начинающих радиолюбителей. Заводские паяльники, имеющие регулировку температуры жала, стоят дорого. Гораздо дешевле купить простой паяльник и самому собрать для него регистр напряжения.

Существует несколько схем монтажа устройства. Самый несложный – это навесной тип. При его сборке не используют печатную плату. Не потребуется также специальные навыки при монтаже. Сам процесс занимает мало времени. Поняв принцип работы регистра, будет просто разобраться в схемах и рассчитать оптимальную мощность для идеальной работы оборудования, где тиристор установлен.

Область применения и цели использования

Применение тиристорного регулятора мощности

Используют тиристор во многих электроинструментах: строительных, столярных бытовых и прочих. Он играет в схемах роль ключа при коммутации токов, при этом работая от малых импульсов. Выключается только при нулевом уровне напряжении в цепи. К примеру, тиристор контролирует скорость работы ножей в блендере, регулирует быстроту нагнетания воздуха в фене, координирует мощность нагревательных элементов в приборах, а также выполняет другие не менее важные функции.

В схемах с высокоиндуктивной нагрузкой, где ток отстает от напряжения, тиристоры могут не закрываться полностью, что приведет к поломке оборудования. В строительных приборах (дрелях, шлифовальных машинах, болгарках и т.д.) тиристор переключается при нажатии кнопки, которая находится в общем с ним блоке. При этом происходят изменения в работе двигателя.

Тиристорный регулятор отлично работает в коллекторном двигателе, где есть щёточный узел. В асинхронных движках устройство менять обороты не сможет.

Принцип действия

Специфика работы прибора заключается в том, что напряжение в нем регулируется мощностью, в также электроперебоями в сети. Регулятор тока на тиристоре при этом пропускает его только в одном конкретном направлении. Если устройство не отключить, оно так и будет продолжать работать, пока его не выключат после определенных действий.

Изготавливая тиристорный регулятор напряжения своими руками, в конструкции следует предусмотреть достаточно свободного места для установки управляющей кнопки или рычага. При сборке по классической схеме имеет смысл использовать в конструкции специальный выключатель, который при изменении уровня напряжения светит разными цветами. Это обезопасит человека от возникновения неприятных ситуаций, поражений током.

Способы закрывания тиристора

Выключение тиристора путем изменения полярности напряжения между катодом и анодом

Подача импульса на управляющий электрод неспособна прекратить его работу или закрыть. Модулятор только включает тиристор. Прекращение действия последнего происходит только после того, как на ступени катод-анод прерывается подача тока.

Регулятор напряжения на тиристоре ку202н закрывается следующими способами:

  • Отключить схему от блока питания (батарейки). Устройство при этом не заработает до тех пор, пока не будет нажата специальная кнопка.
  • Размокнуть соединение анод-катод с помощью проволоки или пинцета. Через эти элементы идет все напряжение, поступая в тиристор. Если перемычку разомкнуть, уровень тока окажется нулевым и устройство выключится.
  • Уменьшить напряжение до минимального.

Простой регулятор напряжения

Схема регулятора мощности для паяльника

Даже самая простая радиодеталь состоит из генератора, выпрямителя, аккумулятора, а также переключателя напряжения. Такие устройства обычно не содержат стабилизаторов. Сам же тиристорный регулятор тока состоит из таких элементов:

  • диод – 4 шт.;
  • транзистор – 1 шт;
  • конденсатор – 2 шт.;
  • резистор – 2 шт.

Чтобы избежать перегрева транзистора, к нему устанавливают систему охлаждения. Желательно, чтобы последняя имела большой запас мощности, которая позволит заряжать в дальнейшем аккумуляторы с невысокой емкостью.

Способы регулирования фазового напряжения в сети

Изменяют переменное электрическое напряжение при помощи таких электрических приборов, как: тиратрон, тиристор и прочие. При изменении угла этих структур на нагрузку подаются неполными полуволнами, а в результате регулируется действующее напряжение. Искажение вызывает возрастание тока и падение напряжения. Последнее меняет форму из синусоидальной в несинусоидальную.

Схемы на тиристорах

Система включится после того, как на конденсаторе соберется достаточно напряжения. При этом момент открытия контролируется при помощи резистора. На схеме он обозначен как R2. Чем медленнее заряжается конденсатор, тем больше сопротивления у этого элемента. Регулируется электроток через управляющий электрод.

Эта схема дает возможность контролировать полную мощность в устройстве, так как регулируются два полупериода. Это возможно благодаря установке в диодном мосте тиристора, который воздействует на одну из полуволн.

Регулятор напряжения, схема которого представлена выше, имеет упрощенную конструкцию. Контролируется здесь одна полуволна, в то время как другая без изменений проходит через VD1. Работает по аналогичному сценарию.