Стройка и ремонт - Информационный портал

Многогранный вид. Правильные многогранники. Типы правильных многогранников

Цель урока:

  1. Ввести понятие правильных многогранников.
  2. Рассмотреть виды правильных многогранников.
  3. Решение задач.
  4. Привить интерес к предмету, научить видеть прекрасное в геометрических телах, развитие пространственного воображения.
  5. Межпредметные связи.

Наглядность: таблицы, модели.

Ход урока

I. Организационный момент. Сообщить тему урока, сформулировать цели урока.

II. Изучение нового материала/

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести “Правильные многогранники”. Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. “Правильных многогранников вызывающе мало, – написал когда-то Л. Кэролл, – но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук”.

Определение правильного многогранника.

Многогранник называется правильным, если:

  1. он выпуклый;
  2. все его грани – равные друг другу правильные многоугольники;
  3. в каждой его вершине сходится одинаковое число ребер;
  4. все его двугранные углы равны.

Теорема: Существует пять различных (с точностью до подобия) типов правильных многогранников: правильный тетраэдр, правильный гексаэдр (куб), правильный октаэдр, правильный додекаэдр и правильный икосаэдр.

Таблица 1. Некоторые свойства правильных многогранников приведены в следующей таблице.

Вид грани Плоский угол при вершине Вид многогранного угла при вершине Сумма плоских углов при вершине В Р Г Название многогранника
Правильный треугольник 60º 3-гранный 180º 4 6 4 Правильный тетраэдр
Правильный треугольник 60º 4-гранный 240º 6 12 8 Правильный октаэдр
Правильный треугольник 60º 5-гранный 300º 12 30 20 Правильный икосаэдр
Квадрат 90º 3-гранный 270º 8 12 6 Правильный гексаэдр (куб)
Правильный треугольник 108º 3-гранный 324º 20 30 12 Правильный додекаэдр

Рассмотрим виды многогранников:

Правильный тетраэдр

<Рис. 1>

Правильный октаэдр


<Рис. 2>

Правильный икосаэдр


<Рис. 3>

Правильный гексаэдр (куб)


<Рис. 4>

Правильный додекаэдр


<Рис. 5>

Таблица 2. Формулы для нахождения объемов правильных многогранников.

Вид многогранника Объем многогранника
Правильный тетраэдр
Правильный октаэдр
Правильный икосаэдр
Правильный гексаэдр (куб)
Правильный додекаэдр

“Платоновые тела”.

Куб и октаэдр дуальны, т.е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением “крыш” на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен – ведь правильных многоугольников на плоскости бесконечно много!

Все правильные многогранники были известны еще в Древней Греции, и им посвящена заключительная, XII книга знаменитых начал Евклида. Эти многогранники часто называют так же платоновыми телами в идеалистической картине мира, данной великим древнегреческим мыслителем Платоном. Четыре из них олицетворяли четыре стихии: тетраэдр-огонь, куб-землю, икосаэдр-воду и октаэдр-воздух; пятый же многогранник, додекаэдр, символизировал все мироздание. Его по латыни стали называть quinta essentia (“пятая сущность”).

Придумать правильный тетраэдр, куб, октаэдр, по-видимому, было не трудно, тем более что эти формы имеют природные кристаллы, например: куб – монокристалл поваренной соли (NaCl), октаэдр – монокристалл алюмокалиевых квасцов ((KAlSO 4) 2 ·l2H 2 O). Существует предположение, что форму додекаэдра древние греки получили, рассматривая кристаллы пирита (сернистого колчедана FeS). Имея же додекаэдр нетрудно построить и икосаэдр: его вершинами будут центры 12 граней додекаэдра.

Где еще можно увидеть эти удивительные тела?

В очень красивой книге немецкого биолога начала нашего века Э. Геккеля “Красота форм в природе” можно прочитать такие строки: “Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы”. Создания природы, приведенные в этой книге, красивы и симметричны. Это неотделимое свойство природной гармонии. Но здесь видны одноклеточные организмы – феодарии, форма которых точно передает икосаэдр. Чем же вызвана эта природная геометризация? Может быть, тем, что из всех многогранников с таким же количеством граней именно икосаэдр имеет наибольший объем и наименьшую площадь поверхности. Это геометрическое свойство помогает морскому микроорганизму преодолевать давление водной толщи.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет по теми же углами, что и поток атомов на вирус. Оказалось, что свойства, о которых говорилось выше, позволяют экономить генетическую информацию. Правильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Правильные многогранники определяют форму кристаллических решеток некоторых химических веществ. Следующая задача проиллюстрирует эту мысль.

Задача. Модель молекулы метана CH 4 имеет форму правильного тетраэдра, в четырех вершинах которого находятся атомы водорода, а в центре – атом углерода. Определить угол связи между двумя CH связями.


<Рис. 6>

Решение. Так как правильный тетраэдр имеет шесть равных ребер, то можно подобрать такой куб, чтобы диагонали его граней были ребрами правильного тетраэдра. Центр куба является и центром тетраэдра, ведь четыре вершины тетраэдра являются и вершинами куба, а описываемая около них сфера однозначно определяется четырьмя точками, не лежащими в одной плоскости.

Треугольник АОС – равнобедренный. Отсюда а – сторона куба, d – длина диагонали боковой грани или ребро тетраэдра. Итак, а = 54, 73561 0 и j = 109,47 0

Задача. В кубе из одной вершины (D) проведены диагонали граней DA, DB и DC и концы их соединены прямыми. Доказать, что многогранник DABC, образованный четырьмя плоскостями, проходящими через эти прямые, – правильный тетраэдр.


<Рис. 7>

Задача. Ребро куба равно a. Вычислить поверхность вписанного в него правильного октаэдра. Найти ее отношение к поверхности вписанного в тот же куб правильного тетраэдра.


<Рис. 8>

Обобщение понятия многогранника.

Многогранник – совокупность конечного числа плоских многоугольников такая, что:

  1. каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного (называемого смежным с первым) по этой стороне);
  2. от любого из многоугольников составляющих многогранник, можно дойти до любого из них, переходя к смежному с ним, а от этого, в свою очередь, к смежному с ним и т.д.

Эти многоугольники называются гранями, их стороны – ребрами, а их вершины – вершинами многогранника.

Приведенное определение многогранника получает различный смысл в зависимости от того, как определить многоугольник:

– если под многоугольником понимают плоские замкнуты ломаные (хотя бы и само пересекающиеся), то приходят к данному определению многогранника;

– если под многоугольником понимать часть плоскости, ограниченной ломанными, то с этой точки зрения под многогранником понимают поверхность, составленную из многоугольных кусков. Если эта поверхность сама себя не пересекает, то она есть полная поверхность некоторого геометрического тела, которое так же называют многогранником. От сюда возникает третья точка зрения на многогранники как на геометрические тела, при чем допускается также существование у этих тел “дырок”, ограниченных конечным числом плоских граней.

Простейшими примерами многогранников являются призмы и пирамиды.

Многогранник называется n- угольной пирамидой, если он имеет одной своей гранью (основанием) какой-либо n- угольник, а остальные грани – треугольники с общей вершиной, не лежащей в плоскости основания. Треугольная пирамида называется также тетраэдром.

Многогранник называется n -угольной призмой, если он имеет двумя своими гранями (основаниями) равные n -угольники (не лежащие в одной плоскости), получающиеся друг из друга параллельным переносом, а остальные грани – параллелограммы, противоположными сторонами которых являются соответственные стороны оснований.

Для всякого многогранника нулевого рода эйлерова характеристика (число вершин минус число ребер плюс число граней) равна двум; символически: В – Р + Г = 2 (теорема Эйлера). Для многогранника рода p справедливо соотношение В – Р + Г = 2 – 2p .

Выпуклым многогранником называется такой многогранник, который лежит по одну сторону от плоскости любой его грани. Наиболее важны следующие выпуклые многогранники:


<Рис. 9>

  1. правильные многогранники (тела Платона) – такие выпуклые многогранники, все грани которых одинаковые правильные многоугольники и все многогранные углы при вершинах правильные и равные <Рис. 9, № 1-5>;
  2. изогоны и изоэдры – выпуклые многогранники, все многогранные углы которых равны (изогоны) или равные все грани (изоэдры); причем группа поворотов (с отражениями) изогона (изоэдра) вокруг центра тяжести переводит любую его вершину (грань) в любую другую его вершину (грань). Полученные так многогранники называются полуправильными многогранниками (телами Архимеда) <Рис. 9, № 10-25>;
  3. параллелоэдры (выпуклые) – многогранники, рассматриваемые как тела, параллельным пересечением которых можно заполнить все бесконечное пространство так, чтобы они не входили друг в друга и не оставляли пустот между собой, т.е. образовывали разбиение пространства <Рис. 9, № 26-30>;
  4. Если под многоугольником понимать плоские замкнутые ломаные (хотя бы и самопересекающиеся), то можно указать еще 4 невыпуклых (звездчатых) правильных многогранников (тела Пуансо). В этих многогранниках либо грани пересекают друг друга, либо грани – самопересекающиеся многоугольники <Рис. 9, № 6-9>.

III. Задание на дом.

IV. Решение задач № 279, № 281.

V. Подведение итогов.

Список использованной литературы:

  1. “Математическая энциклопедия”, под редакцией И. М. Виноградова, издательство “Советская энциклопедия”, Москва, 1985 г. Том 4 стр. 552–553 Том 3, стр. 708–711.
  2. “Малая математическая энциклопедия”, Э. Фрид, И. Пастор, И. Рейман и др. издательство Академии наук Венгрии, Будапешт, 1976 г. Стр. 264–267.
  3. “Сборник задач по математики для поступающих в ВУЗы” в двух книгах, под редакцией М.И. Сканави, книга 2 – Геометрия, изд-во “Высшая школа”, Москва, 1998 г. Стр. 45–50.
  4. “Практические занятия по математике: Учебное пособие для техникумов”, издательство “Высшая школа”, Москва, 1979 г. Стр. 388–395, стр. 405.
  5. “Повторяем математику” издание 2–6, доп., Учебное пособие для поступающих в ВУЗы, издательство “Высшая школа”, Москва, 1974 г. Стр. 446–447.
  6. Энциклопедический словарь юного математика, А. П. Савин, издательство “Педагогика”, Москва, 1989 г. Стр. 197–199.
  7. “Энциклопедия для детей. Т.П. Математика”, главный редактор М. Д. Аксенова ; метод, и отв. редактор В. А. Володин, издательство “Аванта+”, Москва, 2003 г. Стр. 338–340.
  8. Геометрия, 10–11: Учебник для общеобразовательных учреждений/ Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. – 10-е издание – М.: Просвещение, 2001. Стр. 68–71.
  9. “Квант” № 9, 11 – 1983, № 12 – 1987, № 11, 12 – 1988, № 6, 7, 8 – 1989. Научно-популярный физико-математический журнал Академии наук СССР и Академии педагогических наук СССР. Издательство “Наука”. Главная редакция физико-математической литературы. Стр. 5–9, 6–12, 7–9, 10, 4–8, 13, 16, 58.
  10. Решение задач повышенной сложности по геометрии: 11-й класс – М.: АРКТИ, 2002. Стр. 9, 19–20.

МНОГОГРАННИК
часть пространства, ограниченная совокупностью конечного числа плоских многоугольников (см. ГЕОМЕТРИЯ), соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого смежным), причем вокруг каждой вершины существует ровно один цикл многоугольников. Эти многоугольники называются гранями, их стороны - ребрами, а вершины - вершинами многогранника. На рис. 1 представлены несколько известных многогранников. Первые два служат примерами р-угольных пирамид, т.е. многогранников, состоящих из р-угольника, называемого основанием, и р треугольников, примыкающих к основанию и имеющих общую вершину (называемую вершиной пирамиды). При р = 3 (см. рис. 1,а) основанием может служить любая грань пирамиды. Пирамида, основание которой имеет форму правильного р-угольника, называется правильной р-угольной пирамидой. Так, можно говорить о квадратных, правильных пятиугольных и т.д. пирамидах. На рис. 1,в, 1,г и 1,д приведены примеры некоторого класса многогранников, вершины которых можно разделить на два множества из одинакового числа точек; точки каждого из этих множеств являются вершинами р-угольника, причем плоскости обоих p-угольников параллельны. Если эти два р-угольника (основания) конгруэнтны и расположены так, что вершины одного р-угольника соединены с вершинами другого р-угольника параллельными прямолинейными отрезками, то такой многогранник называется р-угольной призмой. Примерами двух р-угольных призм могут служить треугольная призма (р = 3) на рис. 1,в и пятиугольная призма (р = 5) на рис. 1,г. Если же основания расположены так, что вершины одного р-угольника соединены с вершинами другого р-угольника зигзагообразной ломаной, состоящей из 2р прямолинейных отрезков, как на рис. 1,д, то такой многогранник называется р-угольной антипризмой.

Рис. 1. МНОГОГРАННИКИ. а - тетраэдр, или пирамида с треугольными гранями; б - пирамида с треугольными гранями и квадратным основанием; в - треугольная призма; г - пятиугольная призма; д - р-угольная антипризма; е - исключенный тип многогранника с пересекающимися гранями.


Кроме двух оснований, у р-угольной призмы имеются р граней - параллелограммов. Если параллелограммы имеют форму прямоугольников, то призма называется прямой, а если к тому же основаниями служат правильные р-угольники, то призма называется прямой правильной р-угольной призмой. р-угольная антипризма имеет (2p + 2) граней: 2р треугольных граней и два p-угольных основания. Если основаниями служат конгруэнтные правильные р-угольники, а прямая, соединяющая их центры, перпендикулярна их плоскостям, то антипризма называется прямой правильной р-угольной антипризмой. В определении многогранника последняя оговорка сделана для того, чтобы исключить из рассмотрения такие аномалии, как две пирамиды с общей вершиной. Теперь мы введем дополнительное ограничение множества допустимых многогранников, потребовав, чтобы никакие две грани не пересекались, как на рис. 1,е. Любой многогранник, удовлетворяющий этому требованию, делит пространство на две части, одна из которых конечна и называется "внутренней". Другая, оставшаяся часть, называется внешней. Многогранник называется выпуклым, если ни один прямолинейный отрезок, соединяющий любые две его точки, не содержит точек, принадлежащих внешнему пространству. Многогранники на рис. 1,а, 1,б, 1,в и 1,д выпуклые, а пятиугольная призма на рис. 1,г не выпуклая, так как, например, отрезок PQ содержит точки, лежащие во внешнем пространстве призмы.
ПРАВИЛЬНЫЕ МНОГОГРАННИКИ
Выпуклый многогранник называется правильным, если он удовлетворяет следующим двум условиям: (i) все его грани - конгруэнтные правильные многоугольники; (ii) к каждой вершине примыкает одно и то же число граней. Если все грани - правильные р-угольники и q из них примыкают к каждой вершине, то такой правильный многогранник обозначается {p, q}. Это обозначение было предложено Л. Шлефли (1814-1895), швейцарским математиком, которому принадлежит немало изящных результатов в геометрии и математическом анализе. Существуют невыпуклые многогранники, у которых грани пересекаются и которые называются "правильными звездчатыми многогранниками". Так как мы условились такие многогранники не рассматривать, то под правильными многогранниками мы будем понимать исключительно выпуклые правильные многогранники.
Платоновы тела. На рис. 2 изображены правильные многогранники. Простейшим из них является правильный тетраэдр, гранями которого служат четыре равносторонних треугольника и к каждой из вершин примыкают по три грани. Тетраэдру соответствует запись {3, 3}. Это не что иное, как частный случай треугольной пирамиды. Наиболее известен из правильных многогранников куб (иногда называемый правильным гексаэдром) - прямая квадратная призма, все шесть граней которой - квадраты. Так как к каждой вершине примыкают по 3 квадрата, куб обозначается {4, 3}. Если две конгруэнтные квадратные пирамиды с гранями, имеющими форму равносторонних треугольников, совместить основаниями, то получится многогранник, называемый правильным октаэдром. Он ограничен восемью равносторонними треугольниками, к каждой из вершин примыкают по четыре треугольника, и следовательно, ему соответствует запись {3, 4}. Правильный октаэдр можно рассматривать и как частный случай прямой правильной треугольной антипризмы. Рассмотрим теперь прямую правильную пятиугольную антипризму, грани которой имеют форму равносторонних треугольников, и две правильные пятиугольные пирамиды, основания которых конгруэнтны основанию антипризмы, а грани имеют форму равносторонних треугольников. Если эти пирамиды присоединить к антипризме, совместив их основания, то получится еще один правильный многогранник. Двадцать его граней имеют форму равносторонних треугольников, к каждой вершине примыкают по пять граней. Такой многогранник называется правильным икосаэдром и обозначается {3, 5}. Помимо четырех названных выше правильных многогранников, существует еще один - правильный додекаэдр, ограниченный двенадцатью пятиугольными гранями; к каждой его вершине примыкают по три грани, поэтому додекаэдр обозначается как {5, 3}.



Пять перечисленных выше правильных многогранников, часто называемых также "телами Платона", захватили воображение математиков, мистиков и философов древности более двух тысяч лет назад. Древние греки даже установили мистическое соответствие между тетраэдром, кубом, октаэдром и икосаэдром и четырьмя природными началами - огнем, землей, воздухом и водой. Что касается пятого правильного многогранника, додекаэдра, то они рассматривали его как форму Вселенной. Эти идеи не являются одним лишь достоянием прошлого. И сейчас, спустя два тысячелетия, многих привлекает лежащее в их основе эстетическое начало. О том, что они не утратили свою притягательность и поныне, весьма убедительно свидетельствует картина испанского художника Сальвадора Дали Тайная вечеря. Древними греками исследовались также и многие геометрические свойства платоновых тел; с плодами их изысканий можно ознакомиться по 13-й книге Начал Евклида (см. также ГЕОМЕТРИЯ). Изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр и додекаэдр среди кристаллических форм не встречаются, но их можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий.
Число правильных многогранников. Естественно спросить, существуют ли кроме платоновых тел другие правильные многогранники. Как показывают следующие простые соображения, ответ должен быть отрицательным. Пусть {p, q} - произвольный правильный многогранник. Так как его гранями служат правильные р-угольники, их внутренние углы, как нетрудно показать, равны (180 - 360/р) или 180 (1 - 2/р) градусам. Так как многогранник {p, q} выпуклый, сумма всех внутренних углов по граням, примыкающим к любой из его вершин, должна быть меньше 360 градусов. Но к каждой вершине примыкают q граней, поэтому должно выполняться неравенство


где символ
Нетрудно видеть, что p и q должны быть больше 2. Подставляя в (1) р = 3, мы обнаруживаем, что единственными допустимыми значениями q в этом случае являются 3, 4 и 5, т.е. получаем многогранники {3, 3}, {3, 4} и {3, 5}. При р = 4 единственным допустимым значением q является 3, т.е. многогранник {4, 3}, при р = 5 неравенству (1) также удовлетворяет только q = 3, т.е. многогранник {5, 3}. При p > 5 допустимых значений q не существует. Следовательно, других правильных многогранников, кроме тел Платона, не существует. Все пять правильных многогранников перечислены в таблице, приведенной ниже. В трех последних столбцах указаны N0 - число вершин, N1 - число ребер и N2 - число граней каждого многогранника. К сожалению, приводимое во многих учебниках геометрии определение правильного многогранника неполно. Распространенная ошибка состоит в том, что в определении требуется лишь выполнение приведенного выше условия (i), но упускается из виду условие (ii). Между тем условие (ii) совершенно необходимо, в чем проще всего убедиться, рассмотрев выпуклый многогранник, удовлетворяющий условию (i), но не удовлетворяющий условию (ii). Простейший пример такого рода можно построить, отождествив грань правильного тетраэдра с гранью еще одного тетраэдра, конгруэнтного первому. В результате мы получим выпуклый многогранник, шестью гранями которого являются конгруэнтные равносторонние треугольники. Однако к одним вершинам примыкают три грани, а к другим - четыре, что нарушает условие (ii).
Свойства правильных многогранников. Вершины любого правильного многогранника лежат на сфере (что вряд ли вызовет удивление, если вспомнить, что вершины любого правильного многоугольника лежат на окружности). Помимо этой сферы, называемой "описанной сферой", имеются еще две важные сферы. Одна из них, "срединная сфера", проходит через середины всех ребер, а другая, "вписанная сфера", касается всех граней в их центрах. Все три сферы имеют общий центр, который называется центром многогранника.
Двойственные многогранники. Рассмотрим правильный многогранник {p, q} и его срединную сферу S. Средняя точка каждого ребра касается сферы. Заменяя каждое ребро отрезком перпендикулярной прямой, касательной к S в той же точке, мы получим N1 ребер многогранника, двойственного многограннику {p, q}. Нетрудно показать, что гранями двойственного многогранника служат правильные q-угольники и что к каждой вершине примыкают р граней. Следовательно, многограннику {p, q} двойствен правильный многогранник {q, p}. Многограннику {3, 3} двойствен другой многогранник {3, 3}, конгруэнтный исходному (поэтому {3, 3} называется самодвойственным многогранником), многограннику {4, 3} двойствен многогранник {3, 4}, а многограннику {5, 3} - многогранник {3, 5}. На рис. 3 многогранники {4, 3} и {3, 4} показаны в положении двойственности друг другу. Кроме того, каждой вершине, каждому ребру и каждой грани многогранника {p, q} соответствует единственная грань, единственное ребро и единственная вершина двойственного многогранника {q, p}. Следовательно, если {p, q} имеет N0 вершин, N1 ребер и N2 граней, то {q, p} имеет N2 вершин, N1 ребер и N0 граней.



Так как каждая из N2 граней правильного многогранника {p, q} ограничена р ребрами и каждое ребро является общим ровно для двух граней, то всего имеется pN2/2 ребер, поэтому N1 = pN2/2. У двойственного многогранника {q, p} ребер также N1 и N0 граней, поэтому N1 = qN0/2. Таким образом, числа N0, N1 и N2 для любого правильного многогранника {p, q} связаны соотношением
Симметрия. Основной интерес к правильным многогранникам вызывает большое число симметрий, которыми они обладают. Под симметрией (или преобразованием симметрии) многогранника мы понимаем такое его движение как твердого тела в пространстве (например, поворот вокруг некоторой прямой, отражение относительно некоторой плоскости и т.д.), которое оставляет неизменными множества вершин, ребер и граней многогранника. Иначе говоря, под действием преобразования симметрии вершина, ребро или грань либо сохраняет свое исходное положение, либо переводится в исходное положение другой вершины, другого ребра или другой грани. Существует одна симметрия, которая свойственна всем многогранникам. Речь идет о тождественном преобразовании, оставляющем любую точку в исходном положении. С менее тривиальным примером симметрии мы встречаемся в случае прямой правильной р-угольной призмы. Пусть l - прямая, соединяющая центры оснований. Поворот вокруг l на любое целое кратное угла 360/р градусов является симметрией. Пусть, далее, p - плоскость, проходящая посредине между основаниями параллельно им. Отражение относительно плоскости p (движение, переводящее любую точку P в точку P", такую, что p пересекает отрезок PP" под прямым углом и делит его пополам) - еще одна симметрия. Комбинируя отражение относительно плоскости p с поворотом вокруг прямой l, мы получим еще одну симметрию. Любую симметрию многогранника можно представить в виде произведения отражений. Под произведением нескольких движений многогранника как твердого тела здесь понимается выполнение отдельных движений в определенном заранее установленном порядке. Например, упоминавшийся выше поворот на угол 360/р градусов вокруг прямой l есть произведение отражений относительно любых двух плоскостей, содержащих l и образующих относительно друг друга угол в 180/р градусов. Симметрия, являющаяся произведением четного числа отражений, называется прямой, в противном случае - обратной. Таким образом, любой поворот вокруг прямой - прямая симметрия. Любое отражение есть обратная симметрия. Рассмотрим подробнее симметрии тетраэдра, т.е. правильного многогранника {3, 3}. Любая прямая, проходящая через любую вершину и центр тетраэдра, проходит через центр противоположной грани. Поворот на 120 или 240 градусов вокруг этой прямой принадлежит к числу симметрий тетраэдра. Так как у тетраэдра 4 вершины (и 4 грани), то мы получим всего 8 прямых симметрий. Любая прямая, проходящая через центр и середину ребра тетраэдра проходит через середину противоположного ребра. Поворот на 180 градусов (полуоборот) вокруг такой прямой также является симметрией. Так как у тетраэдра 3 пары ребер, мы получаем еще 3 прямые симметрии. Следовательно, общее число прямых симметрий, включая тождественное преобразование, доходит до 12. Можно показать, что других прямых симметрий не существует и что имеется 12 обратных симметрий. Таким образом, тетраэдр допускает всего 24 симметрии. Для наглядности полезно построить картонную модель правильного тетраэдра и убедиться, что тетраэдр действительно обладает 24 симметриями. Развертки, которые можно вырезать из тонкого картона и, сложив, склеить из них пять правильных многогранников, приведены на рис. 4.



Прямые симметрии остальных правильных многогранников можно описать не по отдельности, а все вместе. Условимся понимать под {p, q} любой правильный многогранник, кроме {3, 3}. Прямая, проходящая через центр {p, q} и любую вершину, проходит через противоположную вершину, и любой поворот на целое кратное 360/q градусов вокруг этой прямой является симметрией. Следовательно, для каждой такой прямой существуют, включая тождественное преобразование, (q - 1) различных симметрий. Каждая такая прямая соединяет две из N0 вершин; следовательно, всего таких прямых - N0/2, что дает (q - 1) > N0/2 симметрий. Кроме того, прямая, проходящая через центр многогранника {p, q} и центр любой грани, проходит через центр противоположной грани, и любой поворот вокруг такой прямой на целое кратное 360/р градусов является симметрией. Так как общее число таких линий равно N2/2, где N2 - число граней многогранника {p, q}, мы получаем (p - 1) N2/2 различных симметрий, включая тождественное преобразование. Наконец, прямая, проходящая через центр и середину любого ребра многогранника {p, q}, проходит через середину противоположного ребра, и симметрией является полуоборот вокруг этой прямой. Поскольку имеется N1/2 таких прямых, где N1 - число ребер многогранника {p, q}, мы получаем еще N1/2 симметрий. С учетом тождественного преобразования получаем

Прямых симметрий. Других прямых симметрий нет, и имеется столько же обратных симметрий. Хотя формула (3) была получена не для многогранника {3, 3}, нетрудно проверить, что она верна и для него. Таким образом, многогранник {3, 3} обладает 12 прямыми симметриями, многогранники {4, 3} и {3, 4} имеют по 24 симметрии, а многогранники {5, 3} и {3, 5} - по 60 симметрий. Читатели, знакомые с абстрактной алгеброй, поймут, что симметрии многогранника {p, q} образуют группу относительно определенного выше "умножения". В этой группе прямые симметрии образуют подгруппу индекса 2, а обратные симметрии группу не образуют, так как нарушают свойство замкнутости и не содержат тождественного преобразования (единичного элемента группы). Обычно о группе прямых симметрий говорят как о группе многогранника, а полную группу симметрий называют его расширенной группой. Из рассмотренных выше свойств двойственных многогранников ясно, что любой правильный многогранник и двойственный ему многогранник имеют одну и ту же группу. Группа тетраэдра называется тетраэдрической группой, группа куба и октаэдра называется октаэдрической группой, а группа додекаэдра и икосаэдра - икосаэдрической группой. Они изоморфны знакопеременной группе А4 из четырех символов, симметрической группе S4 из четырех символов и знакопеременной группе А5 из пяти символов соответственно (см. также АЛГЕБРА АБСТРАКТНАЯ).
ФОРМУЛА ЭЙЛЕРА
Рассматривая таблицу, можно заметить интересное соотношение между числом вершин N0, числом ребер N1 и числом граней N2 любого выпуклого правильного многогранника {p, q}. Речь идет о соотношении

Которое называется формулой Эйлера в честь открывшего ее Л.Эйлера (1707-1783). Левая часть формулы (4) называется "эйлеровой характеристикой". Формула Эйлера используется в сочетании с формулами (2) и (3). Из (4) и (2) получаем:


Отсюда следует выражение для N1 через p и q:

Где

Воспользовавшись еще раз формулой (2), находим аналогичные выражения для N0 и N2:

Подставляя полученные выражения в формулы (3) и (4), получаем, что число прямых симметрий многогранника {p, q} равно

Это число можно записать также в одной из эквивалентных форм: qN0, 2N1 или pN2. Область применения формулы Эйлера. Значимость формулы Эйлера усиливается тем, что она применима не только к платоновым телам, но и к любому многограннику, гомеоморфному сфере (см. ТОПОЛОГИЯ). Это утверждение доказывается следующим образом. Пусть P - любой многогранник, гомеоморфный сфере, с N0 вершинами, N1 ребрами и N2 гранями; пусть c = N0 - N1 + N2 - эйлерова характеристика многогранника P. Требуется доказать, что c = 2. Так как Р гомеоморфен сфере, мы можем удалить одну грань и превратить остальные в некоторую конфигурацию на плоскости (например, на рис. 5,а и 5,б вы видите призму, у которой удалена передняя плоскость). "Плоскостная конфигурация" представляет собой сеть точек и прямолинейных отрезков, называемых соответственно "вершинами" и "ребрами", при этом вершины служат концами ребер. Вершины и ребра рассматриваемой нами конфигурации мы считаем смещенными и деформированными вершинами и ребрами многогранника. Таким образом, эта конфигурация имеет N0 вершин и N1 ребер. Остальные N2 - 1 граней многогранника деформируются в N2 - 1 непересекающихся областей на плоскости, определяемой конфигурацией. Назовем эти области "гранями" конфигурации. Вершины, ребра и грани конфигурации и определяют эйлерову характеристику, которая в данном случае равна c - 1.



Теперь мы проведем сплющивание так, что если удаленная грань была р-угольником, то все N2 - 1 граней конфигурации заполнят внутренность р-угольника. Пусть А - некоторая вершина внутри р-угольника. Предположим, что в А сходятся r ребер. Если удалить А и все r сходящихся в ней ребер, то число вершин уменьшится на 1, ребер - на r, граней - на r - 1 (см. рис. 5,б и 5,в). У новой конфигурации N"0 = N0 - 1 вершин, N"1 = N1 - r ребер и N"2 = N2 - 1 - (r - 1) граней; следовательно,

Таким образом, удаление одной внутренней вершины и сходящихся в ней ребер не меняет эйлеровой характеристики конфигурации. Поэтому, удалив все внутренние вершины и сходящиеся в них ребра, мы тем самым сведем конфигурацию к р-угольнику и его внутренности (рис. 5,г). Но эйлерова характеристика останется по-прежнему равной c - 1, а так как конфигурация имеет р вершин, р ребер и 1 грань, мы получаем

Таким образом, c = 2, что и требовалось доказать. Далее можно доказать, что если эйлерова характеристика многогранника равна 2, то многогранник гомеоморфен сфере. Иначе говоря, мы можем обобщить полученный выше результат, показав, что многогранник гомеоморфен сфере в том и только в том случае, если его эйлерова характеристика равна 2.
Обобщенная формула Эйлера. Для классификации других многогранников используется обобщенная формула Эйлера. Если у некоторого многогранника 16 вершин, 32 ребра и 16 граней, то его эйлерова характеристика равна 16 - 32 + 16 = 0. Это позволяет утверждать, что данный многогранник принадлежит классу многогранников, гомеоморфных тору. Отличительной особенностью этого класса является эйлерова характеристика, равная нулю. Более общо, пусть Р - многогранник с N0 вершинами, N1 ребрами и N2 гранями. Говорят, что данный многогранник гомеоморфен поверхности рода n в том и только в том случае, если

Наконец, следует заметить, что ситуация существенно усложняется, если смягчить прежнее ограничение, согласно которому никакие две грани многогранника не должны пересекаться. Например, появляется возможность существования двух негомеоморфных многогранников с одной и той же эйлеровой характеристикой. Их следует различать по другим топологическим свойствам.

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "МНОГОГРАННИК" в других словарях:

    Многогранник … Орфографический словарь-справочник

    Геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями. Стороны граней называются ребрами многогранника, а концы ребер вершинами многогранника. По числу граней различают четырехгранники, пятигранники и т.… … Большой Энциклопедический словарь

Изучая многоугольники, говорят о плоском многоугольнике, понимая под ним сам многоугольник и его внутреннюю область.

То же самое происходит и в стереометрии. По аналогии с понятием плоского многоугольника вводится понятие тела и его поверхности.

Точка геометрической фигуры называется внутренней, если существует шар с центром в этой точке, целиком принадлежащий этой фигуре. Фигура называется областью, если все

ее точки внутренние и если любые две ее точки можно соединить ломаной, целиком принадлежащей фигуре.

Точка пространства называется граничной точкой данной фигуры, если любой шар с центром в этой точке содержит как точки, принадлежащие фигуре, так и точки, не принадлежащие ей. Граничные точки области образуют границу области.

Телом называется конечная область вместе с ее границей. Граница тела называется поверхностью тела. Тело называется простым, если его можно разбить на конечное число треугольных пирамид.

Телом вращения в простейшем случае называется такое тело, которое плоскостями, перпендикулярными некоторой прямой (оси вращения), пересекается по кругам с центрами на этой прямой. Цилиндр, конус, шар являются примерами тел вращения.

48. Многогранные углы. Многогранники.

Двугранным углом называется фигура, образованная двумя полуплоскостями с общей ограничивающей прямой. Полуплоскости называются гранями, а ограничивающая их прямая - ребром двугранного угла.

На рисунке 142 изображен двугранный угол с ребром а и гранями

Плоскость, перпендикулярная ребру двугранного угла, пересекает его грани по двум полупрямым. Угол, образованный этими полупрямыми, называется линейным углом двугранного угла. За меру двугранного угла принимается мера соответствующего ему линейного угла. Если через точку А ребра а двугранного угла провести плоскость у, перпендикулярную этому ребру, то она пересечет плоскости а и 0 по полупрямым линейный угол данного двугранного угла. Градусная мера этого линейного угла является градусной мерой двугранного угла. Мера двугранного угла не зависит от выбора линейного угла.

Трехгранным углом называется фигура, составленная из трех плоских углов Эти углы называются гранями трехгранного угла, а их стороны - ребрами. Общая вершина плоских углов называется вершиной трехгранного угла. Двугранные углы, образуемые гранями и их продолжениями, называются двугранными углами трехгранного угла.

Аналогично определяется понятие многогранного угла как фигуры, составленной из плоских углов Для многогранного угла определяются понятия граней, ребер и двугранных углов так же, как и для трехгранного угла.

Многогранником называют тело, поверхность которого состоит из конечного числа плоских многоугольников (рис. 145).

Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого многоугольника на его поверхности (рис. 145, а, б). Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью. Грани выпуклого многогранника - выпуклые многоугольники. Стороны граней называются ребрами многогранника, а вершины - вершинами многогранника.

49. Призма. Параллелепипед. Куб.

Призмой называется многогранник» который состоит из двух плоских многоугольников, совмещаемых параллельным переносом, и всех отрезков» соединяющих соответствующие точки этих многоугольников. Многоугольники называются основаниями призмы, а отрезки, соединяющие соответствующие вершины, - боковыми ребрами призмы (рис. 146).

Так как параллельный перенос есть движение, то основания призмы равны. Так как при параллельном переносе плоскость переходит в параллельную плоскость (или в себя), то

у призмы основания лежат в параллельных плоскостях. Так как при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то у призмы боковые ребра параллельны и равны.

На рисунке 147, а изображена четырехугольная прнзма Плоские многоугольники ABCD и совмещаются соответствующим параллельным переносом и являются основаниями призмы, а отрезки АА являются боковыми ребрами призмы. Основания призмы равны (параллельный перенос есть движение и переводит фигуру в равную ей фигуру, п. 79). Боковые ребра параллельны и равны.

Поверхность призмы состоит из оснований и боковой поверхности. Боковая поверхность состоит из параллелограммов. У каждого из этих параллелограммов две стороны являются соответствующими сторонами оснований, а две другие - соседними боковыми ребрами призмы.

На рисунке 147, с боковая поверхность призмы состоит из параллелограммов Полная поверхность состоит из оснований и указанных выше параллелограммов.

Высотой призмы называется расстояние между плоскостями ее оснований. Отрезок, который соединяет две вершины, не принадлежащие одной грани, называется диагональю призмы. Диагональным сечением призмы называется сечение ее плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.

На рисунке 147, а изображена призма ее высота, одна из ее диагоналей. Сечение является одним из диагональных сечений этой призмы.

Призма называется прямой, если ее боковые ребра перпендикулярны основаниям. В противном случае прнзма называется

наклонной. Прямая призма называется правильной, если ее основаниями являются правильные многоугольники.

На рисунке 147, а изображена наклонная призма, а на рисунке 147, б - прямая, здесь ребро перпендикулярно основаниям призмы. На рисунке 148 изображены правильные призмы, у них основаниями являются соответственно правильный треугольник, квадрат, правильный шестиугольник.

Бели основания призмы - параллелограммы, то она называется параллелепипедом. У параллелепипеда все грани - параллелограммы. На рисунке 147, а изображен наклонный параллелепипед, а на рисунке 147, б - прямой.

Грани параллелепипеда, не имеющие общих вершин, называются противолежащими. На рисунке 147, а грани противолежащие.

Можно доказать некоторые свойства параллелепипеда.

У параллелепипеда противоположные грани параллельны и равны.

Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.

Точка пересечения диагоналей параллелепипеда является его центром симметрии.

Прямой параллелепипед, у которого основанием является прямоугольник, называется прямоугольным параллелепипедом. У прямоугольного параллелепипеда все грани - прямоугольники.

Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.

Длины непараллельных ребер прямоугольного параллелепипеда называются его линейными размерами или измерениями. У прямоугольного параллелепипеда три линейных размера.

Для прямоугольного параллелепипеда верна такая теорема:

В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его линейных размеров.

Например, в кубе с ребром а диагонали равны:

50. Пирамида.

Пирамидой называется многогранник, который состоит из плоского многоугольника - основания пирамиды, точки, не лежащей в плоскости основания, - вершины пирамиды и всех отрезков, соединяющих вершину с точками основания (рис. 150). Отрезки, соединяющие вершину пирамиды с вершинами основания, называются боковыми ребрами. На рисунке 150, а изображена пирамида SABCD. Четырехугольник ABCD - основание пирамиды, точка S - вершина пирамиды, отрезки SA, SB, SC и SD - ребра пирамиды.

Высотой пирамиды называется перпендикуляр, опущенный из вершины пирамиды на плоскость основания. На рисунке 150, a SO - высота пирамиды.

Пирамида называется -угольной, если ее основанием является

Угольник. Треугольная пирамида называется также тетраэдром.

На рисунке 151, а изображена треугольная пирамида, или тетраэдр, на рисунке 151, б - четырехугольная, на рисунке 151, в - шестиугольная.

Плоскость, параллельная основанию пирамиды и пересекающая ее, отсекает подобную пирамиду.

Пирамида называется правильной, если ее основанием является правильный многоугольник, а основание высоты совпадает с центром этого многоугольника. На рисунке 151 изображены правильные пирамиды. У правильной пирамиды боковые ребра равны; следовательно, боковые грани - равные равнобедренные треугольники. Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой.

По Т.3.4 плоскость а, параллельная плоскости 0 основания пирамиды и пересекающая пирамиду, отсекает от нее подобную пирамиду. Другая часть пирамиды представляет собой многогранник, который называется усеченной пирамидой. Грани усеченной пирамиды, лежащие в параллельных плоскостях называются основаниями усеченной пирамиды, остальные грани называются боковыми гранями. Основания усеченной пирамиды представляют собой подобные (более того, гомотетичные) многоугольники, боковые грани - трапеции. На рисунке 152 изображена усеченная пирамида

51. Правильные многогранники.

Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер.

Существует пять типов правильных выпуклых многогранников (рис. 154): правильный тетраэдр, куб, октаэдр, додекаэдр, икосаэдр. Про правильный тетраэдр и куб сказано раньше (п. 49, 50). В каждой вершине правильного тетраэдра и куба сходятся три ребра.

Грани октаэдра - правильные треугольники. В каждой его вершине сходятся по четыре ребра.

Грани додекаэдра - правильные пятиугольники. В каждой вершине сходятся по три ребра.

Грани икосаэдра - правильные треугольники, но в отличие от тетраэдра и октаэдра в каждой вершине сходится по пять ребер.

Цель урока:

  1. Ввести понятие правильных многогранников.
  2. Рассмотреть виды правильных многогранников.
  3. Решение задач.
  4. Привить интерес к предмету, научить видеть прекрасное в геометрических телах, развитие пространственного воображения.
  5. Межпредметные связи.

Наглядность: таблицы, модели.

Ход урока

I. Организационный момент. Сообщить тему урока, сформулировать цели урока.

II. Изучение нового материала/

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести “Правильные многогранники”. Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. “Правильных многогранников вызывающе мало, – написал когда-то Л. Кэролл, – но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук”.

Определение правильного многогранника.

Многогранник называется правильным, если:

  1. он выпуклый;
  2. все его грани – равные друг другу правильные многоугольники;
  3. в каждой его вершине сходится одинаковое число ребер;
  4. все его двугранные углы равны.

Теорема: Существует пять различных (с точностью до подобия) типов правильных многогранников: правильный тетраэдр, правильный гексаэдр (куб), правильный октаэдр, правильный додекаэдр и правильный икосаэдр.

Таблица 1. Некоторые свойства правильных многогранников приведены в следующей таблице.

Вид грани Плоский угол при вершине Вид многогранного угла при вершине Сумма плоских углов при вершине В Р Г Название многогранника
Правильный треугольник 60º 3-гранный 180º 4 6 4 Правильный тетраэдр
Правильный треугольник 60º 4-гранный 240º 6 12 8 Правильный октаэдр
Правильный треугольник 60º 5-гранный 300º 12 30 20 Правильный икосаэдр
Квадрат 90º 3-гранный 270º 8 12 6 Правильный гексаэдр (куб)
Правильный треугольник 108º 3-гранный 324º 20 30 12 Правильный додекаэдр

Рассмотрим виды многогранников:

Правильный тетраэдр

<Рис. 1>

Правильный октаэдр


<Рис. 2>

Правильный икосаэдр


<Рис. 3>

Правильный гексаэдр (куб)


<Рис. 4>

Правильный додекаэдр


<Рис. 5>

Таблица 2. Формулы для нахождения объемов правильных многогранников.

Вид многогранника Объем многогранника
Правильный тетраэдр
Правильный октаэдр
Правильный икосаэдр
Правильный гексаэдр (куб)
Правильный додекаэдр

“Платоновые тела”.

Куб и октаэдр дуальны, т.е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением “крыш” на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен – ведь правильных многоугольников на плоскости бесконечно много!

Все правильные многогранники были известны еще в Древней Греции, и им посвящена заключительная, XII книга знаменитых начал Евклида. Эти многогранники часто называют так же платоновыми телами в идеалистической картине мира, данной великим древнегреческим мыслителем Платоном. Четыре из них олицетворяли четыре стихии: тетраэдр-огонь, куб-землю, икосаэдр-воду и октаэдр-воздух; пятый же многогранник, додекаэдр, символизировал все мироздание. Его по латыни стали называть quinta essentia (“пятая сущность”).

Придумать правильный тетраэдр, куб, октаэдр, по-видимому, было не трудно, тем более что эти формы имеют природные кристаллы, например: куб – монокристалл поваренной соли (NaCl), октаэдр – монокристалл алюмокалиевых квасцов ((KAlSO 4) 2 ·l2H 2 O). Существует предположение, что форму додекаэдра древние греки получили, рассматривая кристаллы пирита (сернистого колчедана FeS). Имея же додекаэдр нетрудно построить и икосаэдр: его вершинами будут центры 12 граней додекаэдра.

Где еще можно увидеть эти удивительные тела?

В очень красивой книге немецкого биолога начала нашего века Э. Геккеля “Красота форм в природе” можно прочитать такие строки: “Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы”. Создания природы, приведенные в этой книге, красивы и симметричны. Это неотделимое свойство природной гармонии. Но здесь видны одноклеточные организмы – феодарии, форма которых точно передает икосаэдр. Чем же вызвана эта природная геометризация? Может быть, тем, что из всех многогранников с таким же количеством граней именно икосаэдр имеет наибольший объем и наименьшую площадь поверхности. Это геометрическое свойство помогает морскому микроорганизму преодолевать давление водной толщи.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет по теми же углами, что и поток атомов на вирус. Оказалось, что свойства, о которых говорилось выше, позволяют экономить генетическую информацию. Правильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Правильные многогранники определяют форму кристаллических решеток некоторых химических веществ. Следующая задача проиллюстрирует эту мысль.

Задача. Модель молекулы метана CH 4 имеет форму правильного тетраэдра, в четырех вершинах которого находятся атомы водорода, а в центре – атом углерода. Определить угол связи между двумя CH связями.


<Рис. 6>

Решение. Так как правильный тетраэдр имеет шесть равных ребер, то можно подобрать такой куб, чтобы диагонали его граней были ребрами правильного тетраэдра. Центр куба является и центром тетраэдра, ведь четыре вершины тетраэдра являются и вершинами куба, а описываемая около них сфера однозначно определяется четырьмя точками, не лежащими в одной плоскости.

Треугольник АОС – равнобедренный. Отсюда а – сторона куба, d – длина диагонали боковой грани или ребро тетраэдра. Итак, а = 54, 73561 0 и j = 109,47 0

Задача. В кубе из одной вершины (D) проведены диагонали граней DA, DB и DC и концы их соединены прямыми. Доказать, что многогранник DABC, образованный четырьмя плоскостями, проходящими через эти прямые, – правильный тетраэдр.


<Рис. 7>

Задача. Ребро куба равно a. Вычислить поверхность вписанного в него правильного октаэдра. Найти ее отношение к поверхности вписанного в тот же куб правильного тетраэдра.


<Рис. 8>

Обобщение понятия многогранника.

Многогранник – совокупность конечного числа плоских многоугольников такая, что:

  1. каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного (называемого смежным с первым) по этой стороне);
  2. от любого из многоугольников составляющих многогранник, можно дойти до любого из них, переходя к смежному с ним, а от этого, в свою очередь, к смежному с ним и т.д.

Эти многоугольники называются гранями, их стороны – ребрами, а их вершины – вершинами многогранника.

Приведенное определение многогранника получает различный смысл в зависимости от того, как определить многоугольник:

– если под многоугольником понимают плоские замкнуты ломаные (хотя бы и само пересекающиеся), то приходят к данному определению многогранника;

– если под многоугольником понимать часть плоскости, ограниченной ломанными, то с этой точки зрения под многогранником понимают поверхность, составленную из многоугольных кусков. Если эта поверхность сама себя не пересекает, то она есть полная поверхность некоторого геометрического тела, которое так же называют многогранником. От сюда возникает третья точка зрения на многогранники как на геометрические тела, при чем допускается также существование у этих тел “дырок”, ограниченных конечным числом плоских граней.

Простейшими примерами многогранников являются призмы и пирамиды.

Многогранник называется n- угольной пирамидой, если он имеет одной своей гранью (основанием) какой-либо n- угольник, а остальные грани – треугольники с общей вершиной, не лежащей в плоскости основания. Треугольная пирамида называется также тетраэдром.

Многогранник называется n -угольной призмой, если он имеет двумя своими гранями (основаниями) равные n -угольники (не лежащие в одной плоскости), получающиеся друг из друга параллельным переносом, а остальные грани – параллелограммы, противоположными сторонами которых являются соответственные стороны оснований.

Для всякого многогранника нулевого рода эйлерова характеристика (число вершин минус число ребер плюс число граней) равна двум; символически: В – Р + Г = 2 (теорема Эйлера). Для многогранника рода p справедливо соотношение В – Р + Г = 2 – 2p .

Выпуклым многогранником называется такой многогранник, который лежит по одну сторону от плоскости любой его грани. Наиболее важны следующие выпуклые многогранники:


<Рис. 9>

  1. правильные многогранники (тела Платона) – такие выпуклые многогранники, все грани которых одинаковые правильные многоугольники и все многогранные углы при вершинах правильные и равные <Рис. 9, № 1-5>;
  2. изогоны и изоэдры – выпуклые многогранники, все многогранные углы которых равны (изогоны) или равные все грани (изоэдры); причем группа поворотов (с отражениями) изогона (изоэдра) вокруг центра тяжести переводит любую его вершину (грань) в любую другую его вершину (грань). Полученные так многогранники называются полуправильными многогранниками (телами Архимеда) <Рис. 9, № 10-25>;
  3. параллелоэдры (выпуклые) – многогранники, рассматриваемые как тела, параллельным пересечением которых можно заполнить все бесконечное пространство так, чтобы они не входили друг в друга и не оставляли пустот между собой, т.е. образовывали разбиение пространства <Рис. 9, № 26-30>;
  4. Если под многоугольником понимать плоские замкнутые ломаные (хотя бы и самопересекающиеся), то можно указать еще 4 невыпуклых (звездчатых) правильных многогранников (тела Пуансо). В этих многогранниках либо грани пересекают друг друга, либо грани – самопересекающиеся многоугольники <Рис. 9, № 6-9>.

III. Задание на дом.

IV. Решение задач № 279, № 281.

V. Подведение итогов.

Список использованной литературы:

  1. “Математическая энциклопедия”, под редакцией И. М. Виноградова, издательство “Советская энциклопедия”, Москва, 1985 г. Том 4 стр. 552–553 Том 3, стр. 708–711.
  2. “Малая математическая энциклопедия”, Э. Фрид, И. Пастор, И. Рейман и др. издательство Академии наук Венгрии, Будапешт, 1976 г. Стр. 264–267.
  3. “Сборник задач по математики для поступающих в ВУЗы” в двух книгах, под редакцией М.И. Сканави, книга 2 – Геометрия, изд-во “Высшая школа”, Москва, 1998 г. Стр. 45–50.
  4. “Практические занятия по математике: Учебное пособие для техникумов”, издательство “Высшая школа”, Москва, 1979 г. Стр. 388–395, стр. 405.
  5. “Повторяем математику” издание 2–6, доп., Учебное пособие для поступающих в ВУЗы, издательство “Высшая школа”, Москва, 1974 г. Стр. 446–447.
  6. Энциклопедический словарь юного математика, А. П. Савин, издательство “Педагогика”, Москва, 1989 г. Стр. 197–199.
  7. “Энциклопедия для детей. Т.П. Математика”, главный редактор М. Д. Аксенова ; метод, и отв. редактор В. А. Володин, издательство “Аванта+”, Москва, 2003 г. Стр. 338–340.
  8. Геометрия, 10–11: Учебник для общеобразовательных учреждений/ Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. – 10-е издание – М.: Просвещение, 2001. Стр. 68–71.
  9. “Квант” № 9, 11 – 1983, № 12 – 1987, № 11, 12 – 1988, № 6, 7, 8 – 1989. Научно-популярный физико-математический журнал Академии наук СССР и Академии педагогических наук СССР. Издательство “Наука”. Главная редакция физико-математической литературы. Стр. 5–9, 6–12, 7–9, 10, 4–8, 13, 16, 58.
  10. Решение задач повышенной сложности по геометрии: 11-й класс – М.: АРКТИ, 2002. Стр. 9, 19–20.

Введение

Поверхность, составленную из многоугольников и ограничивающую некоторые геометрическое тело, называют многогранной поверхностью или многогранником.

Многогранником называется ограниченное тело, поверхность которого состоит из конечного числа многоугольников. Многоугольники, которые ограничивают многогранник, называются гранями, линии пересечения граней называются ребрами.

Многогранники могут иметь разнообразное и очень сложное строение. Различные постройки, например строящиеся дома из кирпичей и бетонных блоков, представляют собой примеры многогранников. Другие примеры можно найти среди мебели, например стол. В химии форма молекул углеводорода представляет собой тетраэдр, правильного двадцатигранника, куб. В физики примером многогранников служат кристаллы.

С древнейших времен представления о красоте связывали с симметрией. Наверное, этим объясняется интерес человека к многогранникам - удивительным символам симметрии, привлекавшим внимание выдающихся мыслителей, которых поражала красота, совершенство, гармония этих фигур.

Первые упоминания о многогранниках известны еще за три тысячи лет до нашей эры в Египте и Вавилоне. Достаточно вспомнить знаменитые египетские пирамиды и самую известную из них – пирамиду Хеопса. Это правильная пирамида, в основании которой квадрат со стороной 233 м и высота которой достигает 146,5 м. Не случайно говорят, что пирамида Хеопса – немой трактат по геометрии.

История правильных многогранников уходит в глубокую древность. Начиная с 7 века до нашей эры в Древней Греции создаются философские школы, в которых происходит постепенный переход от практической к философской геометрии. Большое значение в этих школах приобретают рассуждения, с помощью которых удалось получать новые геометрические свойства.

Одной из первых и самых известных школ была Пифагорейская, названная в честь своего основателя Пифагора. Отличительным знаком пифагорейцев была пентаграмма, на языке математики - это правильный невыпуклый или звездчатый пятиугольник. Пентаграмме присваивалось способность защищать человека от злых духов.

Пифагорейцы полагали, что материя состоит из четырех основных элементов: огня, земли, воздуха и воды. Существование пяти правильных многогранников они относили к строению материи и Вселенной. Согласно этому мнению, атомы основных элементов должны иметь форму различных тел:

§ Вселенная - додекаэдр

§ Земля - куб

§ Огонь - тетраэдр

§ Вода - икосаэдр

§ Воздух - октаэдр

Позже учение пифагорейцев о правильных многогранниках изложил в своих трудах другой древнегреческий ученый, философ - идеалист Платон. С тех пор правильные многогранники стали называться Платоновыми телами.

Платоновыми телами называются правильные однородные выпуклые многогранники, то есть выпуклые многогранники, все грани и углы которых равны, причем грани - правильные многоугольники. К каждой вершине правильного многогранника сходится одно и то же число рёбер. Все двугранные углы при рёбрах и все многогранные углы при вершинах правильного многоугольника равны. Платоновы тела - трехмерный аналог плоских правильных многоугольников.

Теория многогранников является современным разделом математики. Она тесно связана с топологией, теорией графов, имеет большое значение как для теоретических исследований по геометрии, так и для практических приложений в других разделах математики, например, в алгебре, теории чисел, прикладной математики - линейном программировании, теории оптимального управления. Таким образом, данная тема является актуальной, а знания по данной проблематике – важными для современного общества.

Основная часть

Многогранникомназывается ограниченное тело, поверхность которого состоит из конечного числа многоугольников.

Приведем определение многогранника, равносильное первому определению многогранника.

Многогранник это фигура, являющаяся объединением конечного числа тетраэдров, для которых выполнены следующие условия:

1) каждые два тетраэдра не имеют общих точек, либо имеют общую вершину, либо только общее ребро, либо целую общую грань;

2) от каждого тетраэдра к другому можно перейти по цепочке тетраэдра, в которой каждый последующий прилегает к предыдущему по целой грани.

Элементы многогранника

Грань многогранника – это некоторый многоугольник (многоугольником называется ограниченная замкнутая область, граница которой состоит из конечного числа отрезков).

Стороны граней называются ребрами многогранника, а вершины граней – вершинамимногогранника. К элементам многогранника, кроме его вершин, ребер и граней, относятся также плоские углы его граней и двугранные углы при его ребрах. Двугранный угол при ребре многогранника определяется его гранями, подходящими к этому ребру.

Классификация многогранников

Выпуклый многогранник - это многогранник, любые две точки которого соединимы в нем отрезком. Выпуклые многогранники обладают многими замечательными свойствами.

Теорема Эйлера. Для любого выпуклого многогранника В-Р+Г=2,

Где В – число его вершин, Р - число его ребер, Г - число его граней.

Теорема Коши. Два замкнутых выпуклых многогранника, одинаково составленные из соответственно равных граней равны.

Выпуклый многогранник считается правильным, если все его грани – равные правильные многоугольники и в каждой его вершине сходиться одно и то же число ребер.

Правильный многогранник

Многогранник называется правильным, если, во-первых, он выпуклый, во-вторых, все его грани - равные друг другу правильные многоугольники, в-третьих, в каждой его вершине сходятся одинаковое число граней, и, в-четвертых, все его двугранные углы равны.

Существует пять выпуклых правильных многогранников - тетраэдр, октаэдр и икосаэдр с треугольными гранями, куб (гексаэдр) с квадратными гранями и додекаэдр с пятиугольными гранями. Доказательство этого факта известно уже более двух тысяч лет; этим доказательством и изучением пяти правильных тел завершаются "Начала" Евклида (древнегреческий математик, автор первых дошедших до нас теоретических трактатов по математике). Почему правильные многогранники получили такие имена? Это связано с числом их граней. Тетраэдр имеет 4 грани, в переводе с греческого "тетра" - четыре, "эдрон" - грань. Гексаэдр (куб) имеет 6 граней, "гекса" - шесть; октаэдр - восьмигранник, "окто" - восемь; додекаэдр - двенадцатигранник, "додека" - двенадцать; икосаэдр имеет 20 граней, "икоси" - двадцать.

2.3. Типы правильных многогранников:

1) Правильный тетраэдр (составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольник. Следовательно, сумма плоских углов при каждой вершине равна 180 0);

2) Куб - параллелепипед, все грани которого – квадраты. Куб составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270 0 .

3) Правильный октаэдр или просто октаэдр многогранник, у которого восемь правильных треугольных граней и в каждой вершине сходятся по четыре грани. Октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 240 0 . Его можно построить, сложив основаниями две пирамиды, в основании которых квадраты, а боковые грани - правильные треугольники. Ребра октаэдра можно получить, соединяя центры соседних граней куба, если же соединить центры соседних граней правильного октаэдра, то получим ребра куба. Говорят, что куб и октаэдр двойственны друг другу.

4)Икосаэдр - составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 300 0 .

5) Додекаэдр - многогранник, составленный из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324 0 .

Додекаэдр и икосаэдр тоже двойственны друг другу в том смысле, что, соединив отрезками центры соседних граней икосаэдра, мы получим додекаэдр, и наоборот.

Правильный тетраэдр двойственен сам себе.

При этом не существует правильного многогранника, гранями которого являются правильные шестиугольники, семиугольники и вообще n-угольники при n ≥ 6.

Правильным многогранником называется многогранник, у которого все грани правильные равные многоугольники, и все двугранные углы равны. Но есть и такие многогранники, у которых все многогранные углы равны, а грани - правильные, но разноименные правильные многоугольники. Многогранники такого типа называются равноугольно-полуправильными многогранниками. Впервые многогранники такое типа открыл Архимед. Им подробно описаны 13 многогранников, которые позже в честь великого ученого были названы телами Архимеда. Это усеченный тетраэдр, усеченный оксаэдр, усеченный икосаэдр, усеченный куб, усеченный додекаэдр, кубооктаэдр, икосододекаэдр, усеченный кубооктаэдр усеченный икосододекаэдр, ромбокубооктаэдр, ромбоикосододекаэдр, "плосконосый" (курносый) куб, "плосконосый" (курносый) додекаэдр.

2.4. Полуправильные многогранники или Архимедовы тела - выпуклые многогранники, обладающие двумя свойствами:

1. Все грани являются правильными многоугольниками двух или более типов (если все грани - правильные многоугольники одного типа, это - правильный многогранник).

2. Для любой пары вершин существует симметрия многогранника (то есть движение переводящее многогранник в себя) переводящая одну вершину в другую. В частности все многогранные углы при вершинах конгруэнтны.

Кроме полуправильных многогранников из правильных многогранников - Платоновых тел, можно получить так называемые правильные звездчатые многогранники. Их всего четыре, они называются также телами Кеплера-Пуансо. Кеплер открыл малый додекаэдр, названный им колючим или ежом, и большой додекаэдр. Пуансо открыл два других правильных звездчатых многогранника, двойственных соответственно первым двум: большой звездчатый додекаэдр и большой икосаэдр.

Два тетраэдра, прошедших один сквозь другой, образуют восьмигранник. Иоганн Кеплерприсвоил этой фигуре имя «стелла октангула» - «восьмиугольная звезда». Она встречается и в природе: это так называемый двойной кристалл.

В определении правильного многогранника сознательно - в расчете на кажущуюся очевидность - не было подчеркнуто слово «выпуклый». А оно означает дополнительное требование: «и все грани, которого лежат по одну сторону от плоскости, проходящей через любую из них». Если же отказаться от такого ограничения, то к Платоновым телам, кроме «продолженного октаэдра», придется добавить еще четыре многогранника (их называют телами Кеплера - Пуансо), каждый из которых будет «почти правильным». Все они получаются «озвездыванием» Платонова тела, то есть продлением его граней до пересечения друг с другом, и потому называются звездчатыми. Куб и тетраэдр не порождают новых фигур - грани их, сколько ни продолжай, не пересекаются.

Если же продлить все грани октаэдра до пересечения их друг с другом, то получится фигура, что возникает при взаимопроникновении двух тетраэдров - «стелла октангула», которая называется «продолженным октаэдром».

Икосаэдр и додекаэдр дарят миру сразу четыре «почти правильных многогранника». Один из них - малый звездчатый додекаэдр, полученный впервые Иоганном Кеплером.

Столетиями математики не признавали за всякого рода звездами права называться многоугольниками из-за того, что стороны их пересекаются. Людвиг Шлефли не изгонял геометрическое тело из семейства многогранников только за то, что его грани самопересекаются, тем не менее, оставался непреклонным, как только речь заходила про малый звездчатый додекаэдр. Довод его был прост и весом: это кеплеровское животное не подчиняется формуле Эйлера! Его колючки образованы двенадцатью гранями, тридцатью ребрами и двенадцатью вершинами, и, следовательно, В+Г-Р вовсе не равняется двойке.

Шлефли был и прав, и не прав. Конечно же, геометрический ежик не настолько уж колюч, чтобы восстать против непогрешимой формулы. Надо только не считать, что он образован двенадцатью пересекающимися звездчатыми гранями, а взглянуть на него как на простое, честное геометрическое тело, составленное из 60 треугольников, имеющее 90 ребер и 32 вершины.

Тогда В+Г-Р=32+60-90 равно, как и положено, 2. Но зато тогда к этому многограннику неприменимо слово «правильный» - ведь грани его теперь не равносторонние, а всего лишь равнобедренные треугольники. Кеплер не додумался, что у полученной им фигуры есть двойник.

Многогранник, который называется «большой додекаэдр» - построил французский геометр Луи Пуансо спустя двести лет после кеплеровских звездчатых фигур.

Большой икосаэдрбыл впервые описан Луи Пуансо в 1809 году. И опять Кеплер, увидев большой звездчатый додекаэдр, честь открытия второй фигуры оставил Луи Пуансо. Эти фигуры также наполовину подчиняются формуле Эйлера.

Практическое применение

Многогранники в природе

Правильные многогранники – самые выгодные фигуры, поэтому они широко распространены в природе. Подтверждением тому служит форма некоторых кристаллов. Например, кристаллы поваренной соли имеют форму куба. При производстве алюминия пользуются алюминиево-калиевыми кварцами, монокристалл которых имеет форму правильного октаэдра. Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана. Кристаллы этого химического вещества имеют форму додекаэдра. В разных химических реакциях применяется сурьменистый сернокислый натрий – вещество, синтезированное учёными. Кристалл сурьменистого сернокислого натрия имеет форму тетраэдра. Последний правильный многогранник – икосаэдр передаёт форму кристаллов бора.

Звездчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений. Применяются они и в архитектуре. Многие формы звездчатых многогранников подсказывает сама природа. Снежинки - это звездчатые многогранники. С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок.

Правильные многогранники встречаются так же и в живой природе. Например, скелет одноклеточного организма феодарии (Circjgjnia icosahtdra) по форме напоминает икосаэдр. Большинство феодарий живут на морской глубине и служат добычей коралловых рыбок. Но простейшее животное защищает себя двенадцатью иглами, выходящими из 12 вершин скелета. Оно больше похоже на звёздчатый многогранник.

Также мы можем наблюдать многогранники в виде цветов. Ярким примером могут служить кактусы.


Похожая информация.