Стройка и ремонт - Информационный портал

Оценка дефектов на трубе и их устранение. Допустимые размеры дефектов труб, подлежащих ремонту сваркой. Виды ремонтных работ на линейной части МТП

Дефекты трубопроводов определяют по результатам диагностического контроля ВТД и ДДК.

Классификация дефектов секции по типам и параметрам содержится в РД-23.040.00-КТН-011-11.

Дефекты геометрии трубы - это дефекты, связанные с изменением формы трубы. К ним относятся: вмятина, гофр, сужение.

Глубина гофра определяется как сумма высоты выпуклости и глубины вогнутости, измеренных от образующей трубы.

К дефектам стенки трубы относятся: потеря металла, уменьшение толщины стенки, механическое повреждение, расслоение, расслоение с выходом на поверхность, расслоение в околошовной зоне, трещина, трещиноподобный коррозионно-механический дефект.

Потери металла делятся на объединенные и одиночные.

Объединенная потеря металла – это группа из двух и более коррозионных дефектов, объединенных в единый дефект, если расстояние между соседними дефектами меньше или равно значения четырех толщин стенки трубы в районе дефектов.

Одиночная потеря металла - это один дефект потери металла, расстояние от которого до ближайших потерь металла превышает значение четырех толщин стенки трубы в районе дефекта.

Механические повреждения поверхности стенки трубы, классифицируемые по ГОСТ 21014 как «риска», «царапина», «задир», «продир», «поверхностная вмятина», идентифицируются по данным ВИП как «риска».

Дефекты сварного соединения (шва) – это дефекты в самом сварном шве или в околошовной зоне. Типы и параметры дефектов сварных соединений регламентируются соответствующими нормативными документами. К дефектам сварного шва относятся:

Трещина, непровар, несплавление – дефекты в виде несплошности металла по сварному шву, которые по данным ВИП идентифицируются как «несплошность плоскостного типа» поперечного, продольного, спирального сварного шва;

Поры, шлаковые включения, утяжина, подрез, превышение проплава, наплывы, чешуйчатость, отклонения размеров шва от требований нормативных документов, которые по данным ВИП идентифицируются как «аномалия» поперечного, продольного, спирального сварного шва;

Смещение кромок – несовпадение уровней расположения внутренних и наружных поверхностей стенок сваренных (свариваемых) труб (для поперечного сварного шва) или листов (для спиральных и продольных швов) в стьпсовых сварных соединениях, которое по данным ВИП идентифицируется как «смещение» поперечного, продольного, спирального сварного шва;

Косой стык – сварное стыковое соединение трубы с трубой (с катушкой, с соединительной деталью), в котором продольные оси труб расположены под углом друг к ДРУГУ-

Разнотолщинность стыкуемых труб с отношением толщин стенок более 1,5 является дефектом (за исключением стыков, вьшолненных по специальным техническим условиям, с соответствующей записью в журнале сварки в составе исполнительной документации).

Кольцевой сварной шов, содержащий один и более дефектов, является «дефектным сварным стыком». В базах данных, содержащих сведения о дефектах, учету подлежат «дефектные сварные стыки» без указания в них количества дефектов.

| следующая лекция ==>

Любая трубопроводная конструкция, формируемая в реальных условиях, неизбежно претерпевает изменения, связанные с накоплением дефектов, что приводит к снижению надежности. Главная причина дефекта - отклонение рабочего параметра от нормативного значения задаваемого, как правило, обоснованным допуском. Поскольку дефект, не выявленный при строительстве, является потенциальным очагом отказа, а вероятность отказа зависит от размера дефекта, условий его изменения при эксплуатации, то можно считать, что любой дефект определяет возможность аварии, приводящей к разрушению.

Обобщенная схема классификации дефектов объектов трубопроводного транспорта приведена на рисунке 1.1.

Рисунок 1.1 - Классификация дефектов

При оценке влияния дефекта на работоспособность трубопровода необходимо учитывать условия работы дефекта, его характер и другие факторы. При оценке влияния дефекта на работу металла труб необходимо учитывать режим эксплуатации, физико-химические свойства продукта, уровень напряжений, возможность и характер перегрузок, степень концентрации напряжений и т. д.

Дефект магистрального и технологического нефтепровода - это отклонение геометрического параметра стенки трубы, сварного шва, показателя качества материала трубы, не соответствующее требованиям действующих нормативных документов и возникающее при изготовлении трубы, строительстве или эксплуатации нефтепровода, а также недопустимые конструктивные элементы и соединительные детали, установленные на магистральные и технологические нефтепроводы и обнаруживаемые внутритрубной диагностикой, визуальным или приборным контролем объекта.

Дефекты геометрии трубы .

Это дефекты, связанные с изменением ее формы. К ним относятся:

вмятина - локальное уменьшение проходного сечения трубы в результате механического воздействия, при котором не происходит излома оси нефтепровода;

гофра - чередующиеся поперечные выпуклости и вогнутости стенки трубы, приводящие к излому оси и уменьшению проходного сечения нефтепровода (рисунок 1.2);

овальность - дефект геометрии, при котором сечение трубы имеет отклонение от круглости, а наибольший и наименьший диаметры находятся во взаимно перпендикулярных направлениях.

Рисунок 1.2 - Гофра

Дефекты стенки трубы .

К ним относятся:

потеря металла - изменение номинальной толщины стенки трубы, характеризующееся локальным утонением в результате механического или коррозионного повреждения или обусловленное технологией изготовления (рисунок 1.3);

риска (царапина, задир ) - потеря металла стенки трубы, происшедшая в результате взаимодействия стенки трубы с твердым телом при взаимном перемещении;



Рисунок 1.3 - Дефект «потеря металла»

расслоение - несплошность металла стенки трубы;

расслоение с выходом на поверхность (закат, плена прокатная ) - расслоение, выходящее на внешнюю или внутреннюю поверхность трубы;

расслоение в околошовной зоне - расслоение, примыкающее к сварному шву;

трещина - дефект в виде узкого разрыва металла стенки трубы (рисунок 1.4);


Рисунок 1.4 - Продольная трещина по телу трубы

эрозионное разрушение внутренней поверхности трубопровода - повреждения внутренней поверхности стенки трубопровода: представляет собой последовательное разрушение поверхностного слоя стенки под влиянием механического или электромеханического воздействия взвешенных в движущемся потоке твердых частиц, а также частиц жидкости. При преобладании твердых частиц наблюдается механическая эрозия.

Дефекты коррозионного происхождения .

Сплошная коррозия: равномерная, неравномерная (рисунок 1.5).


Рисунок 1.5 - Коррозия подземной трубопроводной обвязки

Равномерная - коррозия, охватывающая поверхность металла на площади, равной всей поверхности трубы.

Неравномерная - возникает на отдельных участках и протекает с различной скоростью.

Местная коррозия:

точечная - имеет вид отдельных точечных поражений;

пятнами - имеет вид отдельных пятен;

язвенная - имеет вид отдельных раковин.

Межкристаллическая коррозия - коррозия, распространяющаяся по границам кристаллов (зерен) металла.

Стресс-коррозия возникает под комбинированным влиянием внутреннего давления и коррозионной атаки окружающей среды в сочетании с определенной микроструктурной восприимчивостью соответствующих трубных сталей (рисунок 1.6).


Рисунок 1.6 - Стресс-коррозия на трубе Ду1000

Точный механизм возникновения стресс-коррозионного растрескивания и его роста все еще является предметом проводимых исследований.

Стресс-коррозионное растрескивание обычно обнаруживается в основном материале на внешней поверхности трубы и имеет, как и усталостные трещины, продольную ориентацию.

Дефекты сварного шва .

Это дефекты в самом сварном шве или в околошовной зоне, типы и параметры которых установлены нормативными документами (СНиП III–42–80, ВСН 012–88, СП 34–101–98), выявленные методами визуально-измерительного, ультразвукового, радиографического, магнитографического контроля и внутритрубной диагностикой.

В зависимости от места нахождения и вида дефекты условно делятся на наружные и внутренние.

Наружные (внешние) дефекты - это дефекты формы шва, а также прожоги, кратеры, наплывы, подрезы и др. (рисунок 1.7). В большинстве случаев внешние дефекты можно определить визуально.


Рисунок 1.7 - Внешние дефекты сварных швов:

а - неравномерная ширина шва; б - прожоги; в - кратер; г - наплывы; д - подрезы


К внутренним дефектам относятся поры, непровары, шлаковые и неметаллические включения, трещины и несплавления (рисунок 1.8).


Рисунок 1.8 - Внутренние дефекты сварных швов:
а - поры; б - шлаковые включения; в - непровары в корне шва и по кромке; г - трещины; д - несплавления


Поры газовые (рисунок 1.8, а) образуются вследствие загрязненности кромок свариваемого металла, использования влажного флюса или отсыревших электродов, недостаточной защиты шва при сварке в среде углекислого газа, увеличенной скорости сварки и завышенной длины дуги. При сварке в среде углекислого газа, а в некоторых случаях и под флюсом на больших токах образуются сквозные поры - так называемые свищи. Размер внутренних пор колеблется от 0,1 до 2–3 мм в диаметре, а иногда и более. Поры могут быть распределены в шве отдельными группами (скопление пор), в виде цепочки по продольной оси шва или в виде отдельных включений (одиночные поры).

Шлаковые включения (рисунок 1.8, б) в металле сварного шва - это небольшие объемы, заполненные неметаллическими веществами (шлаками, оксидами). Их размеры достигают нескольких миллиметров. Эти включения образуются в шве из-за плохой очистки свариваемых кромок от окалины и других загрязнений, а чаще всего от шлака на поверхности первых слоев многослойных швов перед заваркой последующих слоев.

Шлаковые включения могут быть различной формы: круглые, плоские, в виде пленки или продолговатые (в виде вытянутых «хвостов»). Влияние одиночных шлаковых включений на работоспособность конструкций примерно такое же, как и газовых пор.

Обычно шлаковые включения имеют более вытянутую форму и больший размер по сравнению с порами.

Непровары - несплошности на границах между основным и наплавленным металлами (рисунок 1.8, в) или незаполненные металлом полости в сечении шва. Причинами образования непроваров являются плохая подготовка кромок свариваемых листов, малое расстояние между кромками листов, неправильный или неустойчивый режим сварки и т. п. Непровары снижают работоспособность соединения за счет ослабления рабочего сечения шва. Кроме того, острые непровары могут создать концентрацию напряжений в шве. В конструкциях, работающих на статическую нагрузку, непровар величиной 10–15 % от толщины свариваемого металла не оказывает существенного влияния на эксплуатационную прочность. Однако он является чрезвычайно опасным дефектом, если конструкции работают при вибрационных нагрузках.

Трещины - частичное местное разрушение сварного соединения (рисунок 1.9). Они могут возникать в результате надрыва нагретого металла в пластическом состоянии или в результате хрупкого разрушения после остывания металла до более низких температур. Чаще всего трещины образуются в жестко закрепленных конструкциях.


Рисунок 1.9 - Трещина в сварном шве


Причинами образования трещин могут быть неправильно выбранная технология или плохая техника сварки.

Трещины являются наиболее опасным и по существующим правилам контроля недопустимым дефектом.

Несплавление - это такой дефект, когда наплавляемый металл сварного шва не сплавляется с основным металлом или с ранее наплавленным металлом предыдущего слоя того же шва (рисунок 1.8, д).

Несплавление образуется вследствие плохой зачистки кромок свариваемых деталей от окалины, ржавчины, краски, при чрезмерной длине дуги, недостаточном токе, большой скорости сварки и др.

Наиболее вероятно образование данного дефекта при аргонодуговой сварке алюминиево-магниевых сплавов, а также при сварке давлением. Несплавление - очень опасный дефект, плохо выявляемый современными методами дефектоскопии, и, как правило, является недопустимым.

К классификации дефектов сварных швов можно отнести еще дефекты сварочных работ.

1 Наплывы (натеки).

Образуются при сварке горизонтальными швами вертикальных поверхностей в результате натекания жидкого металла на кромки основного металла. Причины возникновения наплывов:

Большая сила сварочного тока;

Длинная дуга;

Неправильное положение электрода;

Большой угол наклона изделия при сварке на подъем и спуск. В местах наплывов часто бывают непровары, трещины и т. д.

2 Подрезы.

Представляют собой углубления (канавки), образующиеся в основном металле вдоль края шва при большой силе сварочного тока и длинной дуге, т. к. в этом случае увеличивается ширина шва и сильнее оплавляются кромки. Подрезы приводят к ослаблению сечения основного металла и могут явиться причиной разрушения сварного соединения (рисунок 1.7, д ).

3 Прожиги.

Проплавления основного или наплавленного металла с возможным образованием сквозных отверстий. Они возникают из-за недостаточного притупления кромок, большого зазора между ними, большой силы сварочного тока или мощности при невысоких скоростях сварки. Часто прожиги наблюдаются при сварке тонкого металла при увеличении продолжительности сварки, малом усилии сжатия свариваемых деталей, при наличии загрязнений на свариваемых поверхностях или электроде.

4 Смещение кромок - дефект сборки в виде несовпадения срединных линий стенок стыкуемых труб (для кольцевого шва) или стыкуемых листов (для спиральных и продольных швов). Классифицируется как смещение поперечного/продольного/спирального сварного шва (рисунок 1.10).


Рисунок 1.10 - Смещение кромок

Комбинированные дефекты .

К таким дефектам относятся:

Дефект геометрии в сочетании с риской, потерей металла, расслоением или трещиной (рисунок 1.11);

Дефект геометрии, примыкающий или находящийся на сварном шве;

Аномалии сварных швов в сочетании со смещениями;

Расслоение, примыкающее к дефектному сварному шву.


Рисунок 1.11 - Вмятина с риской

Недопустимые конструктивные элементы .

Соединительные детали, не соответствующие требованиям СНиП 2.05.06–85*/6/:

Тройники (рисунок 1.12);

Плоские и другие заглушки и днища;

Сварные секторные отводы;

Переходники;

Патрубки с арматурой, не соответствующие действующим нормам и правилам;

Заплаты вварные и накладные всех видов и размеров;

Накладные элементы из труб («корыта»), приваренные на трубы и др.


Рисунок 1.12 - Дефект тройника

Дефект изоляции .

Дефекты изоляции (рисунок 1.13) существенно снижают результативность комплексной защиты трубопроводов от коррозии и, следовательно, снижается коррозионная стойкость стенки труб. В результате повышается поток преждевременных отказов трубопровода, который может быть уменьшен за счет своевременного выявления и устранения дефектов.


Рисунок 1.13 - Дефекты изоляционного покрытия

Приобретая трубы для своих надобностей, каждый покупатель имеет право потребовать у продавца сертификат качества, в котором приведены данные о партии труб, стали и производителе. Там же может содержаться информация о проведенных испытаниях.

Это очень важная информация, которая дает нам понять, что труба не только произведена в соответствии с ГОСТом или ТУ, но еще и испытана на прочность и наличие дефектов различного типа.

Для проведения этих испытаний используется различное оборудование. Но испытывать можно не только новые трубы, но и трубы, находящиеся в составе трубопроводов и даже буровых установок.

Прибор выявляет такие изъяны, как:

  • нарушение сплошности;
  • ужимы;
  • непровары;
  • закаты;
  • трещины;
  • волосовины;
  • рванины;
  • неметаллические включения.

Использование труб с перечисленными дефектами может привести к возникновению техногенных катастроф и аварий. Дефекты возникают как при плохой настройке производственного оборудования, так и использовании некачественного сырья.

Вихретоковый дефектоскоп можно легко встроить в действующие производственные линии. Он позволяет проводить контроль изделия прямо в процессе его изготовления, что значительно снижает расходы на отбраковку некачественной продукции.

В основе метода лежит анализ взаимодействия внешнего электромагнитного поля с магнитным полем, производимым вихревыми токами, которые наводятся в контролируемом изделии при помощи возбуждаемой катушки. При этом контроль проводится без взаимодействия с исследуемой трубой, что позволяет сохранять технологическую скорость производственной линии.

Оборудование для поиска дефектов в действующих трубопроводах или установках

Это способ базируется на использовании двух пар акустических датчиков. Один их датчиков каждой пары улавливает продольные колебания, а второй – поперечные.

Обработка сигналов, поступивших от датчиков во время проведения испытаний, позволяет достаточно точно определить характер и расположение имеющихся дефектов. Этот способ используется для трубопроводов, имеющих диаметр более 80 мм и толщину стенки в пределах 5 – 15 мм.

Дефекты, которые надежно обнаруживаются предлагаемым методом:

  • локальное уменьшение толщины стенки трубы до 50% от первоначальной;
  • дефекты сварных швов;
  • серия язв (с их простиранием вдоль оси трубы более 100 мм);
  • раскрытие даже самых малых трещин.

Дефектоскопия бурильных труб необходима по той причине, что при бурении газовых и нефтяных скважин нередко происходят аварии, связанные с разрушением конструктивных элементов бурильной колонны.

Самыми уязвимыми местами колонны являются с замками (сварные и резьбовые).

Эти разрушения образуются вследствие возникновения усталости металла и чаще всего представляют собой трещины.

Контроль резьбовых участков труб производится с помощью передвижной комплексной дефектоскопической установки типа ПКДУ-1. Трубы контролируют при помощи выносных датчиков, соединенных с пунктом контроля кабелями длиной до 60 м.

Неразрушающий контроль тела стальных насосно-компрессорных труб производится установкой ДИНА-1. Ее работа основана на магнитноиндукционном методе.

Толщину стенок алюминиевых и стальных бурильных труб, насосно-компрессорных установок и проверяют с помощью толщинометра БУИТ-1. Его действие основано на измерении временного промежутка между импульсами ультразвука, отраженными от внутренней и наружной стенки трубы. При этом не нет необходимости очищать поверхность труб от ржавчины и краски, так как ввод ультразвука производится бесконтактным способом.

Это лишь малая часть приборов, используемых для проверки целостности как производимых, так и уже работающих труб. Обычному потребителю эти приборы чаще всего недоступны, поэтому его задачей является визуальный осмотр труб при их покупке и проверка прилагаемого к ним сертификата. Трубы для своего хозяйства лучше приобретать в больших проверенных магазинах строительных товаров. Там вероятность купить заведомо некачественный товар гораздо меньше.

Необходимо, в первую очередь, обнаружить повреждения и дефекты на внутренней и внешней стороне трубы. Они являются своеобразными «маячками», показывающими специалистам слабые места в эксплуатации газопровода. Существует классификация подобных изъянов. Все повреждения и дефекты на металлической газовой трубе подразделяются на следующие группы:

  • осевые трубные отклонения от проектных решений;
  • брак и повреждения, влияющие на форму поперечного сечения металлической трубы;
  • механические повреждения и .

К осевым отклонениям трубы, в свою очередь, относятся следующие объекты трассы: всплывшие, выпучины и арочные выбросы, а также просадки и провисы.

Если часть газового магистрального трубопровода находится в обводненном грунте и при этом имеет выход на поверхность, то он классифицируется как всплывший участок. Техническая диагностика подобных объектов подробно прописана в соответствующей нормативной документации.

Газопроводные участки, в которых произошло отклонение оси от проектных решений, а труба вышла на поверхность, называются арочными. Их форма может соответствовать следующим видам:

  • несимметричный и симметричный (одна полуволновая синусоида);
  • ось, смещенная в вертикальном положении (на косогоре);
  • горизонтальная «змейка» (более двух полуволн).

В момент сильного промерзания газовой трубопроводной сети происходит процесс выпучивания грунтов. Это свойственно местам, где талые грунты подвергаются воздействию холодных температур.

Классифицируемые как провисные, имеют оголенные места, которые не соприкасаются с землей. Это, как правило, происходит при оттаивании грунтов, расположенных в зоне вечной мерзлоты и при карстовых процессах.

В лесных зонах, а также в глинистых местах зачастую происходят так называемые просадки газопроводной трубы ниже уровня, положенного по проекту. Этот процесс связан с влажностью грунта, выше нормативного или его оттаивания в холодных регионах.

Существуют факторы, влияющие на поперечные сечения газопроводных труб и изменяющие его форму. В результате она становится овальной, с гофрами или вмятинами.

Овальное сечение трубопровода является дефектом, который получается в результате механического изменения кольцевого сечения трубы в эллипсообразное. Причиной подобного процесса является существенное радиальной давление на металлическую поверхность объекта.

Также на трубе могут появиться вмятины разнообразной формы и длины. Они появляются из-за контакта объекта с внешним телом твердой основы без острых углов и кромок. Давление на поверхность трубы может быть осуществлено как динамически, так и статически. Это повреждение, как правило, носит плавное соприкосновение с сопряженными участками трубы и не приводят к высоким напряжениям участка в зоне поражения.

Технического состояния линейной части магистрального газопровода необходимо более внимательно осматривать нижнюю поверхность трубы. Именно в этом месте в процессе прокладки трубопровода и его эксплуатации чаще всего появляются вмятины.

Складки на металлической поверхности газопровода называются гофрами. Они появляются в результате холодного изгиба труб, а также в процессе их укладки и осуществлении изоляционных работ. Иногда они образуются непосредственно при эксплуатации в местах изгиба газопроводной трассы, в совокупности со слабонесущими грунтовыми породами, высоким температурным режимом и давлением.

Существует еще одна группа повреждений и дефектов труб – на это раз их стенок, в том числе мест сварных соединений и швов. Они возникают в результате не регламентированной транспортировки, прокладки газопровода, а также его эксплуатации. Повреждения на стенках газопроводной трубы могут быть следующими:

  1. Небольшие повреждения (как сквозные, так и несквозные) узкой формы в виде трещин. Они обычно имеют угол близкий к 90 градусам и направление в сторону поверхности стенки трубы.
  2. Расслоение металла и образование параллельных слоев.
  3. Отсутствие сплошности металла большой длины в направлении прокатки (закат).
  4. Металлическое отслоение, имеющее различную толщину и величину. Оно проходит в сторону прокатки и одной стороной соединяется с основным металлом (плена).
  5. Разрыв металла, имеющий различную раскрытую форму. Он окисленный и располагается сверху или под углом в сторону прокатки (рванина).
  6. Содержание в трубе неметаллических веществ (ликвация).
  7. Канавка на металлической поверхности трубы, имеющая продольную форму. Она образуется в результате соприкосновения в процессе прокатки металла трубы с острыми выступами.

Все эти дефекты связаны с производственным металлургическим браком. Но дефекты образуются также и в результате транспортировки труб, их прокладки и эксплуатации. Они классифицируются следующим образом:

  1. Сверхнормативное уменьшение толщины стенок металла на значительной территории трубопровода.
  2. Единичные и локальные дефекты на поверхности газопроводной трубы.
  3. Линейные дефекты протяженной формы.

Утончения стенок металла на трубопроводе, как правило, вызван коррозионными повреждениями, имеющими сплошной равномерный и неравномерный характер. Критическим критерием при технической оценке пораженной коррозией зоны газопровода является не столько величина поврежденной площади объекта, сколько фиксация минимальной толщины стенки металла.

Дефекты трубы, имеющие линейно-протяжную форму, представляют собой повреждения, в которых длина больше ширины и глубины. К ним относятся задиры и царапины, которые, как правило, образуются в результате механических воздействий на объект. Возможность эффективной и безопасной эксплуатации газопроводной трубы с подобными повреждениями зависит от напряженности металла в зоне дефекта.

Указанные дефекты и повреждения металлической поверхности трубопровода, рассмотрены, с точки зрения качественной оценки, а не количественной, которая также имеет свою классификацию и основывается на специально разработанных нормативных стандартах.

1.5 Дефекты трубопроводных конструкций и причины их возникновения

Дефект – это любое несоответствие регламентированным нормам. Главной причиной появления дефектов является отклонение рабочего параметра от нормативного значения, обоснованного допуском.

Дефекты трубопроводных конструкций подразделяются на:

Дефекты труб;

Дефекты сварных соединений;

Дефекты изоляции.

Различают следующие дефекты труб:

Металлургические – дефекты листов и лент, из которых изготавливаются трубы, т.е. различного рода расслоения, прокатная плена, вкатанная окалина, поперечная разнотолщинность, неметаллические включения и др.

Технологические – связаны с несовершенством технологии изготовления труб, которые условно можно разделить на дефекты сварки и поверхностные дефекты (наклеп при экспандировании, смещение или угловатость кромок, овальность труб)

Строительные – обусловлены несовершенством технологии строительно-монтажных работ, нарушениями технологических и проектных решений по транспортировке, монтажу, сварке, изоляционно-укладочным работам (царапины, задиры, вмятины на поверхности труб).

Причины возникновения дефектов труб

Существующая технология прокатки металла, технология непрерывной разливки стали на отдельных металлургических заводах является одной из причин изготовления некачественных труб. Нередки случаи разрушения по причине расслоения металла.

На трубных заводах входной контроль сырья несовершенен или полностью отсутствует. Это приводит к тому, что дефекты сырья становятся дефектами труб.

При изготовлении труб приходится подвергать металл нагрузкам, при которых он работает за пределом текучести. Это приводит к появлению наклепа, микрорасслоений, надрывов и других скрытых дефектов. Из-за кратковременности последующих заводских испытаний труб (20…30 с) многие скрытые дефекты не выявляются и «срабатывают» уже в процессе эксплуатации МТ.

В недостаточной степени контролируется заводами и геометрическая форма труб. Так, на трубах диаметром 500…800мм смещение кромок достигает 3мм (при норме для спирально-шовных труб 0,75…1,2мм), овальность – 2%

Механические воздействия при погрузочно-разгрузочных, транспортных и монтажных операциях приводят к появлению на трубах вмятин, рисок, царапин, задиров

При очистке трубопроводов скребками-резцами возникают дефекты пластической деформации локальных участков поверхности трубы – риски, подрезы и т.д. Эти концентраторы напряжений являются потенциальными очагами развития коррозионно-усталостных трещин. Очистка трубопроводов с помощью проволочных щеток исключает повреждения труб в виде подрезов, но при определенных режимах обработки приводит к деформациям поверхности металла, снижающим его коррозионную стойкость.

Коррозионные повреждения труб (внешние - в местах нарушения сплошности изоляции, а внутренние - в местах скоплений воды)

Дефект сварного соединения – это отклонения разного рода от установленных норм и технических требований, которые уменьшают прочность и эксплуатационную надежность сварных соединений и могут привести к разрушению всей конструкции. Наиболее часто встречаются дефекты формы и размеров сварных швов, дефекты макро- и микроструктуры, деформация и коробление сварных конструкций.

Нарушение формы и размеров шва свидетельствуют о наличии таких дефектов, как наплывы (натеки), подрезы, прожоги, незаваренные кратеры.

Наплывы – чаще всего образуются при сварке горизонтальными швами вертикальных поверхностей, в результате натекания жидкого металла на кромки холодного основного металла. Они могут быть местными (в виде отдельных застывших капель) или протяженными вдоль шва. Причинами возникновения наплывов являются большая сила сварочного тока, длинная дуга, неправильное положение электрода, большой угол наклона изделия при сварке на подъем и спуск.

Подрезы – представляют собой углубления, образующиеся в основном металле вдоль края шва. Подрезы образуются из-за повышенной мощности сварочной горелки и приводят к ослаблению сечения основного металла и разрушению сварного соединения.

Прожоги – это проплавление основного или наплавленного металла с возможным образованием сквозных отверстий. Они возникают вследствие недостаточного притупления кромок, большого зазора между ними, большой силы сварочного тока или мощности горелки при невысоких скоростях сварки. Особенно часто прожоги наблюдаются в процессе сварки тонкого металла и при выполнении первого прохода многослойного шва, а также при увеличении продолжительности сварки, малом усилии сжатия и наличии загрязнений на поверхностях свариваемых деталей или электродах (точечная и шовная контактная сварка).

Незаваренные кратеры – образуются при резком обрыве дуги в конце сварки. Они уменьшают сечение шва и могут явиться очагами образования трещин.

К дефектам макроструктуры относят дефекты: газовые поры, шлаковые включения, непровары, трещины, выявляемые с помощью средств оптики (увеличение не более чем в 10 раз).

Газовые поры – образуются в сварных швах вследствие быстрого затвердевания газонасыщенного расплавленного металла, при котором выделяющиеся газы не успевают выйти в атмосферу.

Рисунок 2 – Газовые поры

Такой дефект наблюдается при повышенном содержании углерода в основном металле, наличии ржавчины, масла и краски на кромках основного металла и поверхности сварочной проволоки, использовании влажного или отсыревшего флюса.

Шлаковые включения – результат небрежной очистки кромок свариваемых деталей и сварочной проволоки от окалины, ржавчины и грязи, а также (при многослойной сварке) неполного удаления шлака с предыдущих слоев.

Они могут возникать при сварке длинной дугой, неправильном наклоне электрода, недостаточной силе сварочного тока, завышенной скорости сварки. Шлаковые включения различны по форме (от сферической до игольчатой) и размером (от микроскопической до нескольких миллиметров). Они могут быть расположены в корне шва, между отдельными слоями, а также внутри наплавленного металла. Шлаковые включения ослабляют сечение шва, уменьшают его прочность и являются зонами концентрации напряжений.

Рисунок 3 – Шлаковые включения

Непровары – местное несплавление основного металла с наплавлением, а также несплавление между собой отдельных слоев шва при многослойной сварке из-за наличия тонкой прослойки окислов, а иногда и грубой шлаковой прослойки внутри швов.

Рисунок 4 – Непровары

Причинами непроваров являются: плохая очистка металла от окалины, ржавчины и грязи, малый зазор в стыке, излишнее притупление и малый угол скоса кромок, недостаточная сила тока или мощности горелки, большая скорость сварки, смещение электрода в сторону от оси шва. Непровары по сечению шва могут возникнуть из-за вынужденных перерывов в процессе сварки.

Трещины – в зависимости от температуры образования подразделяют на горячие и холодные.

Рисунок 5 – Трещины

Горячие трещины появляются в процессе кристаллизации металла шва при температуре 1100 – 1300 С. Их образование связано с наличием полужидких прослоек между кристаллами наплавленного металла шва в конце его затвердевания и действием в нем растягивающих усадочных напряжений. Повышенное содержание в металле шва углерода, кремния, водорода и никеля также способствует образованию горячих трещин, которые обычно располагаются внутри шва. Такие трещины выявить трудно.

Холодные трещины возникают при температурах 100 – 300 С в легированных сталях и при нормальных (менее 100 С) температурах в углеродистых сталях сразу после остывания шва или через длительный промежуток времени. Основная причина их образования – значительное напряжение, возникающее в зоне сварки при распаде твердого раствора и скопление под большим давлением молекулярного водорода в пустотах, имеющихся в металле шва. Холодные трещины выходят на поверхность шва и хорошо заметны.

К дефектам микроструктуры сварного соединения относят

Микропоры,

Микротрещины,

Нитридные, кислородные и другие неметаллические включения,

Крупнозернистость,

Участки перегрева и пережога.

Дефекты изоляции - нарушение сплошности; адгезия; заниженная толщина; гофры; морщины; задиры; царапины; проколы.

Основные причины образования дефектов изоляционного покрытия на трубопроводах:

при хранении и подготовке материалов – засорение битума и обводнение готовой мастики и ее составляющих;

при приготовлении грунтовки и мастики – небрежная дозировка составляющих; несоблюдение режима разогревания котла; недостаточное размешивание битума при приготовлении грунтовки;

при нанесении грунтовки и битумной мастики – загустение грунтовки; образование пузырьков на поверхности трубопровода; оседание пыли на поверхность труб; пропуски грунтовки и мастики на поверхности трубопровода и особенно около сварных швов; неровное нанесение мастики; охлаждение мастики; конструктивные недостатки изоляционной машины;

при нанесении армирующих и оберточных рулонных материалов – нарушение однородности покрытия; выдавливание слоя мастики; недостаточное погружение стеклохолста в мастику;

при нанесении полимерных лент – сквозные отверстия в ленте; несплошной клеевой слой; неравномерность толщины ленты в рулоне; неправильная регулировка намоточной машины; нарушение температурного режима нанесения ленты; плохая очистка поверхности труб;

при укладке трубопровода – нарушение технологии укладки, особенно при раздельном способе укладки; захват изолированных труб тросом; трение трубопровода о стенки траншеи при укладке; отсутствие подготовки дна траншеи; отсутствие подсыпки не менее 10см дна траншеи на участках с каменистыми и щебенистыми грунтами; плохое рыхление мерзлых грунтов и особенно отсутствие регулировки изоляционных машин;

при эксплуатации трубопровода – действие грунта; вес трубопровода; почвенные воды; микроорганизмы; корни растений; температурные воздействия; агрессивность грунта.






Ущерба. Рисунок 3.6 - Схема процесса формирования дерева событий и поиска пути движения по нему. 4. Программное обеспечение ситуационного управления безопасностью магистральных газопроводов 4.1 Описание программы управления безопасностью магистральных газопроводов Программа предназначена для работы в операционных средах MicroSoft Windows 98/NT/XP. Windows обеспечивает удобный и...




КВт (2200 л.с.) разработки этой же фирмы. С конца 1940-х гг. ГТД начинают применяться для привода морских судовых движителей, а с конца 1950-х гг. - в составе газоперекачивающих агрегатов (ГПА) на магистральных газопроводах для привода нагнетателей природного газа. Таким образом, постоянно расширяя область и масштабы своего применения, ГТД развиваются в направлении повышения единичной мощности, ...