Стройка и ремонт - Информационный портал

Получение азота. Оборудование для производства азота Выделение азота из воздуха

УХАНОВ А.В.

Азот сегодня широко используется в виде газа и жидкого раствора во многих отраслях промышленности. который перед применением переводят в газообразное состояние при помощи специального оборудования - газификатора. Используется технический азот для обеспечения безопасности работы с легковоспламеняющимися веществами, в установках пожаротушения и для создания определенной среды, необходимой для осуществления технологических процессов.

Актуальность выбранной темы обусловлена тем, что автоматизация воздухоразделительных установок, кроме снижения трудозатрат на обслуживание и повышения надежности действия установки, дает технико-экономический эффект за

Анализ его свойств современными специалистами помог развитию различных современных технологий. Соответствующий ГОСТ устанавливает параметры, какими должен обладать азот для различных областей применения. Сегодня данный технический газ получают, используя современные установки воздухо- и газоразделения.

Атмосферный воздух представляет собой смесь азота, кислорода, аргона и других газов. Составные части воздуха не связаны между собой химическим взаимодействием. Приближенно воздух можно рассматривать как смесь только азота и кислорода, так как содержание в воздухе аргона и других газов составляет менее 1 %. В этом случае принимают объемное содержание в воздухе азота 79% и кислорода 21 %.

Разделение воздуха на кислород и азот является сложной технической задачей. Наиболее просто это сделать, если предварительно сжижать воздух и использовать затем для разделения его на составные части различия температуры кипения кислорода и азота. Жидкий азот, при атмосферном давлением, кипит при температуре минус 195,8 о С, а жидкий кислород - при температуре минус 182,9 о С. Таким образом, между температурами кипения этих сжиженных газов существует разница почти в 13 о С. Поэтому, если постепенно испарять сжиженный воздух, то сначала будет испаряться преимущественно азот, обладающий более низкой температурой кипения. По мере испарения азота из жидкости она будет обогащаться кислородом. Повторяя этот процесс многократно, можно добиться желаемой степени разделения воздуха на азот и кислород требуемой чистоты. Этот способ получения азота и кислорода из воздуха называют способом (методом) глубокого охлаждения и ректификации.

В настоящее время получение азота и кислорода из атмосферного воздуха методом глубокого охлаждения и ректификации является наиболее экономичным, поэтому он имеет широкое промышленное применение. Этот способ позволяет получать азот и кислород практически в любых количествах. При этом расход электроэнергии составляет 0,4 - 1,6 кВтч на 1 м 3 кислорода, в зависимости от размеров и технологической схемы установки.

Современные установки для получения азота, кислорода и редких газов из воздуха можно разделить на три группы:

1) Кислородные установки для производства технического кислорода (99,2% - 99,5% О 2) и технологического кислорода (94% - 97% О 2),

2) Азотно-кислородные и азотные установки,

3) Установки для получения редких газов.

Производительность различных установок колеблется в пределах от 65 до 158000 м 3 /ч перерабатываемого воздуха

\ Современное производство требует постоянного контроля технологических параметров, их своевременного и точного регулирования и поддержания в заданных пределах. Эффективное решение этой задачи возможно только с использованием автоматизированных систем управления технологическими процессами (АСУТП).

Конечной целью автоматизации является создание полностью автоматизированных производств, где роль человека сводится к составлению режимов и программ протекания технологических процессов, контролю за работой приборов и их наладке.

Основные преимущества автоматизированного производства: облегчение труда, улучшение санитарно-гигиенических условий труда, повышение общего культурного уровня жизни человека, улучшение технико-экономических показателей, повышение качества продукции, повышение производительности труда, снижение себестоимости продукции.

Данная работа посвящёна усовершенствованию существующего стандартного процесса разделения воздуха с целью получения азота, путем внедрения автоматической системы регулирования (АСР) давления сжатого воздуха на входе в блок разделения установки воздухоразделительной

Рассмотрим основные методы получения азота из воздуха

1. Адсорбционный метод разделения воздуха основан на избирательном поглощении того или иного газа адсорбентами и получил широкое применение из-за следующих преимуществ:

Высокая разделительная способность по адсорбируемым компонентам в зависимости от выбора адсорбента;

Быстрый пуск и остановка по сравнению с криогенными установками;

Большая гибкость установок, т.е. возможность быстрого изменения режима работы, производительности и чистоты в зависимости от потребности;

Автоматическое регулирование режима;

Возможность дистанционного управления;

Низкие энергетические затраты по сравнению с криогенными блоками;

Простое аппаратурное оформление;

Низкие затраты на обслуживание;

Низкая стоимость установок по сравнению с криогенными технологиями;

Адсорбционный способ используется для получения азота и кислорода, так как он обеспечивает при низкой себестоимости отличные параметры качества..

Принцип получения азота при адсорбционном методе прост, но эффективен. Воздух подается в адсорбер - углеродные молекулярные сита при повышенном давлении и температуре внешней среды. В ходе процесса кислород поглощается адсорбентом, в то время как азот проходит через аппарат. Адсорбент поглощает газ до состояния равновесия между адсорбцией и десорбцией, после чего адсорбент необходимо регенерировать, т.е. удалить с поверхности адсорбента поглощённые компоненты. Это можно сделать либо путём повышения температуры, либо путём сброса давления. Обычно в короткоцикловой адсорбции используют регенерацию посредством сброса давления. Чистота азота по этой технологии 99,999 %.

Установка воздухоразделительная Аж-0,6-3 предназначена для производства азота жидкого особой чистоты по ГОСТ 9293-74 именно адсорбционным методом .

Разделение воздуха является одним из наиболее важных и ответственных технологических процессов на заводе. Основным технологическим оборудованием является блок разделения воздухоразделительной установки

2.Метод криогенного разделения базируется на тепло-массообменных процессах, в частности процессе низкотемпературной ректификации, основывающейся на разности температур кипения компонентов воздуха и различии составов, находящихся в равновесии жидких и паровых смесей.

В процессе разделения воздуха при криогенных температурах между находящимися в контакте жидкой и паровой фазами, состоящими из компонентов воздуха, осуществляется массо- и теплообмен. В результате паровая фаза обогащается низкокипящим компонентом (компонентом, имеющим более низкую температуру кипения), а жидкая - высококипящим компонентом.

Таким образом, процесс выглядит так: воздух, засасываемый многоступенчатым компрессором, проходит сначала через воздушный фильтр, где очищается от пыли, проходит влагоотделитель, где отделяется вода, конденсирующаяся при сжатии воздуха, и водяной холодильник, охлаждающий воздух и отнимающий тепло, образующееся при сжатии. Для поглощения углекислоты из воздуха включается аппарат - декарбонизатор, заполняемый водным раствором едкого натра. Полное удаление влаги и углекислоты из воздуха имеет существенное значение, так как замерзающие при низких температурах вода и углекислота забивают трубопроводы, и приходится останавливать установку для оттаивания и продувки

Полученный жидкий воздух подвергают дробной перегонке или ректификации в ректификационных колоннах. При постепенном испарении жидкого Пройдя осушительную батарею, сжатый воздух поступает в так называемый воздуха сначала выпаривается преимущественно азот, а остающаяся жидкость всё более обогащается кислородом. Повторяя подобный процесс многократно на ректификационных тарелках воздухоразделительных колонн, получают жидкий кислород, азот и аргон нужной чистоты. Возможность успешной ректификации основывается на довольно значительной разности(около

13 °С) температур кипения жидких азота (минус 196 °С) и кислорода (минус 183 °С). Несколько сложнее отделить аргон от кислорода (минус 185 °С). Далее разделенные газы отводятся для накопления в специальные криогенные емкости .

3. Мембранный метод

Промышленное использование технологии мембранного разделения газов началось в 70-х годах и произвело настоящую революцию в индустрии разделения газов. Вплоть до сегодняшних дней эта технология активно развивается и получает все большее распространение благодаря своей высокой экономической эффективности. Устройство современных мембранных газоразделительных и воздухоразделительных установок исключительно надежно. В первую очередь это обеспечивается тем, что в них нет никаких подвижных элементов, поэтому механические поломки почти исключены. Современная газоразделительная мембрана, основной элемент установки, представляет собой уже не плоскую мембрану или пленку, а полое волокно. Половолоконная мембрана состоит из пористого полимерного волокна с нанесенным на его внешнюю поверхность газоразделительным слоем. Суть работы мембранной установки заключается в селективной проницаемости материала мембраны различными компонентами газа. Разделение воздуха с использованием селективных мембран основано на том, что молекулы компонентов воздуха имеютразную проницаемость через полимерные мембраны. Воздух фильтруется

сжимается до желаемого давления, осушается и затем подается через мембранный модуль. Более «быстрые» молекулы кислорода и аргона проходят через мембрану и удаляются наружу. Чем через большее количество модулей проходит воздух, тем больше становится концентрация азота N2. Наиболее эффективно по затратам получать азот с содержанием основного вещества 93-99,5 % : Каталог продукции. - Режим доступа: http://www.metran.ru/netcat_files/973/941/150.pdf - Загл. с экрана.

8 Двухпроводный радарный уровнемер Rosemount серии 5400 [Электронный ресурс]: Лист технических данных; каталог 2008-2009. - Режим доступа: http://metratech.ru/file/Rosemount_5400.pdf - Загл. с экрана.

9 Компактный вибрационный сигнализатор уровня Rosemount 2110 [Электронный ресурс]: Лист технических данных; каталог 2006-2007. - Режим доступа: http://www.metran.ru/netcat_files/960/927/Rosemount_2110_PDS_00813_0107_4029_RevBA_rus.pdf - Загл. с экрана.

10 Интеллектуальный измерительный преобразователь температуры Rosemount 3144P [Электронный ресурс]: Лист технических данных; каталог 2008-2009. - Режим доступа: http://www.metran.ru/netcat_files/469/369/Rosemount_3144P_PDS_00813_0107_4021_RevNA_rus.pdf - Загл. с экрана.

12 Буралков, А.А. Автоматизация технологических процессов металлургических предприятий: учебно-метод. пособие / И.И. Лапаев, А.А. Буралков: ГАЦМиЗ - Красноярск, 1998. - 136 с.

13 Теория автоматического управления: учеб. для вузов / В. Н. Брюханов [и др.]; под ред. Ю. М. Соломенцева. - Изд. 3-е, стер. - М.: Высш. шк., 2000. - 268 с.

МиЗ», 2003. - 52 с.

25 ГОСТ 2.105-95. ЕСКД. Общие требования к текстовым документам. - Введ. впервые; дата введ. 08.08.1995. - М.: Госстандарта РФ, 1995. - 47 с.

26 ГОСТ 21.404-85 СПДС. Автоматизация технологических процессов. - Введ. впервые; дата введ. 01.01.1986. - М.: Госстандарта РФ, 1986. - 36 с.

ВАРИАНТЫ ИСПО

Анализ его свойств современными специалистами помог развитию различных современных технологий. Соответствующий ГОСТ устанавливает параметры, какими должен обладать азот для различных областей применения. Сегодня данный технический газ получают, используя современные установки воздухо- и газоразделения. Анализ его свойств современными специалистами помог развитию различных современных технологий. Соответствующий ГОСТ устанавливает параметры, какими должен обладать азот для различных областей применения. Сегодня данный технический газ получают, используя современные установки воздухо- и газоразделения.

Рассмот

Рим основные характеристики азота. Данное вещество является нетоксичным газом, который не имеет цвета. Также он характеризуется отсутствием запаха и вкуса. Азот существует в природе и является невоспламеняющимся при нормальном давлении и температуре газом. Поскольку азот немного легче воздуха, с высотой в атмосфере его концентрация увеличивается. Если азот охладить до точки кипения, он из газообразного состояния перейдет в жидкое. Сжиженный азот представляет собой бесцветную жидкость, которая способна при определенной температуре и под воздействием соответствующего давления преобразовываться в кристаллическое твердое и бесцветное вещество. Азот является слабым проводником тепла Производство азота для использования в промышленности

Азот технический в наши дни используется во многих отраслях промышленности. Анализ его свойств современными специалистами помог развитию различных современных технологий. Соответствующий ГОСТ устанавливает параметры, какими должен обладать азот для различных областей применения. Сегодня данный технический газ получают, используя современные установки воздухо- и газоразделения. Научно-производственная компания «Грасис» является лидером в разработке и производстве оборудования для воздухоразделения и создания газовых сред. Мы разрабатываем и производим стационарные и мобильные установки, которые позволяют получать необходимый объем азота. Наша компания предоставляет свои услуги не только в России и странах СНГ, но и имеет множество клиентов в Восточной Европе.

Воздух как неисчерпаемый источник промышленного азота долгое время оставался неиспользованным. Объясняется это тем, что разделение воздуха на азот, и другие газы представляло большие трудности. Основная причина заключалась в том, что азот, который занимает 80% объема воздуха, как правило, не вступает в соединение с другими элементами .

Можно было бы пойти по другому пути - вместо фиксации азота связать кислород, который легко вступает в соединения со многими элементами, встречающимися в природе. Азот в этом случае остался бы в газообразном состоянии. Но этот дорогой и малопроизводительный метод не мог служить источником азота для промышленных целей.

По аналогии с методом разделения жидкости полагали, что самым рациональным способом разделения воздуха является его ожижение с последующим испарением каждого газа в отдельности . Но получить жидкий воздух долгое время не удавалось.

В дальнейшем выяснилось, что критическая температура для азота составляет -147°C, для кислорода -119°C, а для воздуха -141°C. Каждый газ имеет не только свою критическую температуру, но и свое критическое давление, ниже которого газ, охлажденный до своей критической температуры, не переходит в жидкость.

После этого открытия стало понятно, чтобы получить жидкий воздух, необходимо было температуру газообразного воздуха понизить до -141°C, а давление поднять до 37,2 атмосферы . При более высокой температуре, как бы велико ни было давление, получить жидкий воздух нельзя. Но при более низкой температуре можно сжижать воздух и при меньшем давлении. Например, если охладить воздух до температуры -195°C, то он перейдет в жидкое состояние и при атмосферном давлении.

Получив жидкий воздух, начали искать способ его разделения на составные части. Было известно, что для разделения смеси, состоящей из нескольких жидкостей с различными температурами кипения, необходимо медленно отгонять сначала одну из них, кипящую при более низкой температуре, а затем ту, температура кипения которой выше.

Жидкий воздух представляет собой смесь жидкостей с различными температурами кипения , и к нему могут быть применены все законы фракционной перегонки.

Как известно, температура кипения азота на 195,8°C, а кислорода - на 183°C ниже нуля. Чтобы испарить азот или кислород, не нужен специальный источник теплоты. Даже та теплота, которая поступает из окружающего воздуха, вызывает бурное кипение этих жидкостей.

Чтобы понизить скорость кипения и устранить возможное одновременное испарение азота и кислорода, необходимо уменьшить приток теплоты из окружающей среды.

Азот из жидкого воздуха получают путем медленного его испарения. Но однократным разделением жидкого воздуха нельзя получить чистых продуктов отгона . Даже в начале процесса, когда в жидком воздухе содержится 78% азота и 21% кислорода, полученный газообразный азот будет содержать примесь кислорода и чем меньше азота будет оставаться в жидкой смеси, тем количество примеси кислорода будет больше.

Например, когда в жидкой фазе останется только 50 процентов азота, то в газообразной фазе, кроме азота, будет содержаться до 20, процентов кислорода.

Поэтому неминуемо повторное разделение газов, для чего их необходимо снова сконденсировать. Но конденсировать азот нецелесообразно, обычно из получаемой смеси газов конденсируют только кислород.

Пропуская через жидкий воздух газообразный азот, содержащий примеси кислорода, можно получить чистый азот, так как часть газообразного кислорода сконденсируется и останется в жидкой фазе. Одновременно из жидкого воздуха дополнительно испарится часть азота.

На принципе повторной конденсации кислорода с одновременным испарением азота из жидкого воздуха основан процесс разделения жидкого воздуха на чистый газообразный азот и жидкий кислород.

Аппарат, в котором осуществляется разделение жидкого воздуха на азот и кислород, называется ректификационной колонной , а число ступеней, в которых конденсируется кислород и испаряется азот, носит название числа тарелок. Чем больше тарелок в ректификационной колонне, тем чище конечные продукты разделения жидкого воздуха на его составные части.

Ректификационная колонна состоит из ряда перегородок, в которые впаяны сливные стаканы. В верхнее отделение (тарелку) - медленно подают жидкий воздух. По сливным стаканам он постепенно стекает вниз, заполняя все тарелки колонны.

1 - корпус колонны; 2 - латунные перегородки; 3 - сливные стаканы; 4 - сливной кран

Схема ректификационной колонны

Перегородки сделаны из латунного листа, в котором на расстоянии около 3 миллиметров друг от друга в шахматном порядке пробиты мелкие отверстия диаметром в 0,8-0,9 миллиметра. Образующийся при (испарении жидкого воздуха газообразный азот с примесью кислорода под небольшим давлением проходит через отверстия в дне тарелок, не давая жидкости просочиться через них. Газы, пройдя через слой жидкости, вспенивают ее, хорошо перемешиваясь с ней. Во время перемешивания газообразный конденсируется и переходит в жидкое состояние. За счет теплоты, выделенной при конденсации кислорода, испаряется новая часть азота, которая вместе с поступившим азотом переходит вверх на следующую тарелку, где он все больше обедняется кислородом. В результате наверху, на выходе из колонны, получают чистый газообразный азот, а внизу колонны собирается чистый жидкий кислород.

Так как свободный азот содержится в атмосфере, получение его сводится к отделению от кислорода и других составных частей воздуха. Это осуществляется постепенным испарением жидкого воздуха в специальных установках, причем одновременно получаются также кислород и инертные газы.

Азот представляет собой бесцветный и не имеющий запаха газ (т. пл. -210°С, т. кип. -196°С). Растворимость его в воде мала - около 2% по объему. Молекула азота двухатомна и заметно не распадается на атомы даже при очень высоких температурах.

Свободный азот химически весьма инертен. В обычных условиях он не реагирует ни с металлоидами, ни с металлами (кроме Li). При повышении температуры его активность увеличивается главным образом по отношению к металлам, с некоторыми из которых он при нагревании соединяется, образуя нитриды этих металлов (например, Mg 3 N 2).

3Mg + N 2 = Mg 3 N 2

Применение свободного азота, как такового, довольно ограниченно. Главным образом его используют для заполнения электроламп. Соединения азота имеют громадное значение для биологии и используются в разнообразных отраслях промышленности. Наибольшие их количества расходуются в качестве минеральных удобрений и при производстве взрывчатых веществ.

Основным исходным продуктом для промышленного получения азотных соединений является свободный азот воздуха. Перевод его в связанное состояние осуществляется главным образом методом синтеза аммиака, разработанным в 1913 г.

Приложение к обратимой реакции

N 2 + ЗН 2 < = > 2NH 3 + 22 ккал

принципа смещения равновесий показывает, что наиболее выгодными для образования аммиака условиями являются возможно низкая температура и возможно высокое давление. Однако даже при 700°С скорость реакции настолько мала (и следовательно, равновесие устанавливается так медленно), что не может быть и речи о ее практическом использовании. Напротив, при более высоких температурах, когда равновесное состояние устанавливается быстро, ничтожно малым становится содержание аммиака в системе. Таким образом, техническое проведение рассматриваемого процесса оказывается как будто невозможным, так как, ускоряя достижение равновесия при помощи нагревания, мы одновременно смещаем положение равновесия в невыгодную сторону.

Существует, однако, средство ускорить достижение равновесного состояния без одновременного смещения равновесия. Таким часто помогающим средством является применение подходящего катализатора.

Хорошо действующим оказалось в данном случае металлическое железо (с примесью Аl 2 О 3 и К 2 О).

Процесс синтеза аммиака ведут при температурах 400-550°С (на катализаторе) и давлениях 100-1000 ат.

Равновесие устанавливается при этом достаточно быстро. После выделения аммиака из газовой смеси последняя вновь вводится в цикл. За четверть века, с 1913 до 1938 г., ежегодная мировая продукция связанного таким путем азота возросла от 7 т до 1700 тыс. т. В настоящее время синтез аммиака является основным промышленным методом получения связанного азота.

Значительно меньшее промышленное значение имеет разработанный в 1901 г. цианамидный метод, который основан на том, что при высоких температурах карбид кальция (получаемый накаливанием смеси извести и угля в электрической печи) реагирует со свободным азотом по уравнению

CaC 2 + N 2 = CaCN 2 + C + 70 ккал

Полученный таким путем цианамид кальция (Ca = N-C?N) представляет собой серый (от примеси углерода) порошок. При действии перегретого (т.е. нагретого выше 100°С) водяного пара он разлагается с выделением аммиака:

CaCN 2 + 3H 2 O = CaCO 3 + 2NH 3

Печь для получения цианамида кальция представляет собой цилиндр из огнеупорного материала, по оси которого проходит труба, имеющая внутри нагревательную обмотку. После загрузки печи измельченным СаС 2 она наглухо закрывается и в нее подается азот. Так как образование цианамида сопровождается выделением тепла, исходную смесь достаточно нагреть до 800°С, а дальше реакция идет сама. За время с 1913 г. по 1938 г. ежегодная мировая продукция связанного азота по цианамидному методу возросла с 38 тыс. т до 300 тыс. т.

Молекула NH 3 имеет форму треугольной пирамиды. Так как электроны связей Н-N довольно сильно смещены от водорода к азоту (pNH = 0,28), молекула аммиака в целом характеризуется значительной полярностью (длина диполя 0,31 А).

Аммиак представляет собой бесцветный газ (т. пл. -78°С, т. кип. -33°С) с характерным резким запахом «нашатырного спирта». Растворимость его в воде больше, чем всех других газов: один объем воды поглощает при 0°С около 1200, а при 20°С - около 700 объемов NH 3 . Продажный концентрированный раствор имеет, обычно плотность 0,91 и содержит 25% NH 3 по весу.

Подобно воде, жидкий аммиак ассоциирован главным образом за счет образования водородных связей. Он является хорошим растворителем для многих неорганических и органических соединений.

С ассоциацией жидкого аммиака связана его большая теплота испарения (5,6 ккал / моль). Так как критическая температура NH 3 лежит высоко (+ 133°С) и при испарении его от окружающей среды отнимается много тепла, жидкий аммиак может служить хорошим рабочим веществом холодильных машин. При движении поршня направо, нагревшийся от сжатия NH 3 поступает в змеевик, охлаждаемый снаружи водой (или воздухом). Охлажденный аммиак уже при имеющемся в системе давлении (7-8 ат) сжимается и стекает в приемник, из которого жидкий аммиак поступает в змеевик, где испаряется вследствие разрежения в этой части системы. Необходимое для испарения тепло поглощается при этом из окружающего змеевик пространства. Последовательное повторение всего цикла процессов создает непрерывное охлаждение окружающего змеевик пространства.

Для химической характеристики аммиака основное значение имеют реакции трех типов присоединения, замещения водорода и окисления.

Наиболее характерны для аммиака реакции присоединения. В частности, при действии его на многие соли образуются кристаллические аммиакаты состава CaCl 2 ·8NH 3 , CuSO 4 · 4NH 3 и т.п., по характеру образования и устойчивости похожие на кристаллогидраты.

При растворении аммиака в воде происходит частичное образование гидроокиси аммония:

NH 3 + Н 2 О < = >NH 4 OH

В этом соединении радикал аммоний (NH 4) играет роль одновалентного металла. Поэтому электролитическая диссоциация NH 4 OH протекает по основному типу:

NH 4 OH < = >NH 4 + + ОН -

Объединяя оба уравнения, получаем общее представление о равновесиях, имеющих место в водном растворе аммиака:

NH 3 + Н 2 О < = >NH 4 OH < = >NH 4 + + ОН -

Из-за наличия этих равновесий водный раствор аммиака (часто называемый просто «аммиаком») резко пахнет им. Ввиду того что ионов ОН - этот раствор содержит сравнительно немного, NH 4 OH рассматривается как слабое основание.

Добавление кислот ведет к смещению приведенных выше равновесий вправо (ввиду связывания ионов ОН") и к образованию солей аммония, например, по уравнению:

NH 4 OH + HCl = Н 2 О + NH 4 Cl

Соли эти образуются также при непосредственном взаимодействии аммиака с кислотами, например, по реакции:

NH3 + HCl = NH4Cl

Как сам ион аммония (NH 4 +), так и большинство его солей бесцветны. Почти все они хорошо растворимы в воде и в растворах сильно диссоциированы.

При нагревании солей аммония они довольно легко разлагаются. Характер разложения определяется свойствами образующей анион кислоты. Если последняя является окислителем, происходит окисление аммиака по реакции, например:

NH 4 NO 2 = 2H 2 O + N 2

Если кислота окислителем не является, характер распада определяется ее летучестью при температуре разложения. Из солей нелетучих кислот (например, Н 3 РО 4) выделяется только аммиак, если же кислота летуча (например, НСl), то при охлаждении она вновь соединяется с NH 3 . Результат подобного распада и последующего обратного соединения практически сводится к тому, что рассматриваемая соль (например, NH 4 Cl) возгоняется.

Под действием на соли аммония: ильных щелочей происходит выделение аммиака по реакции, например:

NH 4 Cl + NaOH = NaCl + NH 4 OH = NaCl + NH 3 + H 2 O

Этим можно пользоваться для лабораторного получения аммиака, а также для открытия ионов NH·в растворе: к последнему добавляют щелочи и затем обнаруживают выделяющийся аммиак по запаху или действию его на влажную лакмусовую бумажку.

Производные аммония имеют большое практическое значение. Его гидроокись (NH 4 ОH) является одним из важнейших химических реактивов, разбавленные растворы которого («нашатырный спирт») иногда применяются также в домашнем хозяйстве (при стирке белья и выводе пятен). Хлористый аммоний («нашатырь») при высоких температурах реагирует с окислами металлов, обнажая чистую металлическую поверхность. На этом основано использование его при пайке металлов. В электротехнике NH 4 Cl употребляют для изготовления «сухих» гальванических элементов. Азотнокислый аммоний (NH 4 NO 3) является основой сложных азотных удобрений и служит также для приготовления некоторых взрывчатых смесей. Сернокислый аммоний [(NH 4) 2 SO 4 ] в больших количествах потребляется сельским хозяйством как азотное удобрение. Кислый углекислый аммоний (NH 4 HCO 3) применяется при хлебопечении (главным образом в кондитерском производстве). Такое его использование основано на том, что при нагревании он легко разлагается по схеме

NH 4 HCO 3 = NH 3 ^ + H 2 O + CO 2 ^

и образующиеся газы придают тесту необходимую пористость. Сернистый аммоний [(NH 4) SO 4 ] является одним из основных реактивов аналитической химии. Соединения аммония играют важную роль при некоторых производственных процессах химической промышленности и широко используются в лабораторной практике.

Продажный нашатырный спирт содержит обычно около 10% аммиака. Он находит и медицинское применение. В частности, вдыхание его паров или прием внутрь (3-10 капель на рюмку воды) используется для снятия состояния сильного опьянения. Смазывание кожи нашатырным спиртом ослабляет действие укусов насекомых. При выводе пятен хорошие результаты дают во многих случаях следующие составы (по объему):

  • а) 4 ч. нашатырного спирта, 5 ч. эфира и 7 ч. винного спирта;
  • б) 10 ч. нашатырного спирта, 7 ч. винного спирта, 3 ч. хлороформа и 80 ч. бензина.

Взрывной распад азотнокислого аммония протекает в основном по уравнению:

2NH 4 NO 3 = 4H 2 O + O 2 + 57 ккал

Иногда применяемый в практике взрывных работ аммонал представляет собой тесную смесь NH 4 NO 3 (72%), алюминия в порошке (25%) и угля (3%). Смесь эта взрывается только от детонации.

Реакции замещения водорода менее характерны для аммиака, чем рассмотренные выше реакции присоединения. Однако при высоких температурах он способен замещать свои водороды на металл, например, по реакции:

2Аl+2NH 3 = 2AlN + ЗН 2

Именно накаливанием металлов в атмосфере аммиака чаще всего и получают нитриды. Последние представляют собой твердые вещества, большей частью очень устойчивые по отношению к нагреванию. Водой нитриды активных металлов более или менее легко разлагаются с выделением аммиака, например, по схеме:

Mg 3 N 2 + 6Н 2 О = 3Mg(OH) 2 + 2NH 3 ^

Нитриды малоактивных металлов по отношению к воде, как правило, весьма устойчивы.

Ввиду нелетучести нитридов и нерастворимости их ни в одном из известных растворителей применимых к ним методов определения молекулярных весов пока не существует. Поэтому известны только простейшие формулы нитридов. Во многих из них видимая валентность металла совместима с ее обычными значениями. В других случаях уже сама простейшая формула указывает на сложность молекулярной структуры. К первому типу относится, например, Mn 3 N 2 , ко второму - Cr 2 N.

При замещении в молекуле аммиака только двух атомов водорода получаются имиды, а при замещении лишь одного - амиды металлов. Первые содержат в своем составе двухвалентный радикал = NH (имино-группу), вторые - одновалентный радикал - NH 2 (амино-группу). Например, при пропускании сухого NH 3 над нагретым металлическим натрием по реакции

2Na + 2NH 3 = 2NaNH 2 + Н 2

образуется бесцветный амид натрия, являющийся типичной солью с анионом NH 2 . Водой он разлагается по уравнению:

NaNH 2 + Н 2 О = NH 3 + NaOH

Амид натрия находит применение при органических синтезах.

Наряду с производными металлов известны продукты замещения водородов аммиака на галоид. Примером может служить хлористый азот (NCl 3), образующийся в виде желтых маслянистых капель при действии хлора на крепкий раствор хлористого аммония:

NH 4 Cl + 3Cl 2 = 4HCl + NCl 3

Пары NCl 3 (т. пл. -27°С, т. кип. 71°С) обладают резким запахом. Уже при нагревании выше 90°С (или ударе) хлористый азот с сильным взрывом распадается на элементы.

При действии йода на крепкий раствор NH 3 выделяется темно-коричневый осадок так называемого йодистого азота, представляющего собой смесь NJ 3 с NHJ 2 и NH 2 J. Йодистый азот крайне неустойчив и в сухом виде взрывается от малейшего прикосновения.

Продуктом замещения одного из водородов аммиака на гидроксильную группу является гидроксиламин (NH 2 OH). Он образуется при электролизе азотной кислоты (с ртутным или свинцовым катодом) в результате восстановления HNO 3 по схеме:

НNO 3 + 6Н = > 2Н 2 О + NH 2 OH

Гидроксиламин представляет собой бесцветные кристаллы. Используется он главным образом как восстановитель.

С кислотами гидроксиламин (т. пл. 33°С) дает соли, из которых хлористая (NH 2 OH·НСl) является его обычным продажным препаратом. Все соединения гидроксиламина ядовиты и, как правило, хорошо растворимы в воде. Окислители переводят гидроксиламин либо в N 2 , либо в N 2 O, например, по реакциям:

  • 2NH 2 OH + HOCl = N 2 +HCl + 3H 2 O
  • 6NH 2 OH + 4HNO 3 = 3N 2 O + 4NO + 11H 2 O.

Подобно замещению водорода, реакции окисления для аммиака сравнительно малохарактерны. На воздухе он не горит, но подожженный в атмосфере кислорода сгорает по уравнению:

4NH 3 + ЗО 2 = 6Н 2 О + 2N 2

Хлор и бром энергично реагируют с аммиаком по схеме:

2NH 3 + ЗГ 2 = 6НГ + N 2

Так же окисляют они аммиак и в растворе. По отношению к большинству других окислителей NH 3 при обычных условиях устойчив. Наиболее важным продуктом частичного окисления аммиака является гидразин (N 2 H 4), образующийся по реакции:

2NH 3 + NaOCl = H 2 O + N 2 H 4 + NaCl

Как видно из уравнения, под действием окислителя каждая молекула аммиака теряет в данном случае один атом водорода, причем остающиеся радикалы NH 2 соединяются друг с другом. Структурная формула гидразина будет, следовательно, H 2 N-NH 2 .

Гидразин представляет собой бесцветную жидкость, смешивающуюся с водой в любых соотношениях. Он находит применение в качестве восстановителя.

Присоединяя кислоты, гидразин (т. пл. 2°С, т. кип. 114°С) образует два ряда солей, например N 2 H 4 ·НСl и N 2 H 4 ·2НСl. Окисляется он обычно до свободного азота (например, по реакции:

2K 2 Cr 2 O 7 + 3N 2 H 4 +8H 2 SO 4 = 2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 3N 2 + 14H 2 O)

Пары гидразина в смеси с воздухом способны сгорать по реакции

N 2 H 4 + O 2 = > 2H 2 O + N 2 + 149 ккал

На этом основано использование в качестве ракетного топлива. Гидразин и все его производные ядовиты.

При взаимодействии гидразина с азотистой кислотой по схеме

N 2 H 4 + HNO 2 = 2H 2 O + HN 3

образуется азотистоводородная кислота (Н-N = N?N), представляющая собой бесцветную летучую жидкость с резким запахом. По силе азотистоводородная кислота близка к уксусной, а по растворимости солей (азидов) похожа на соляную. Подобно самой HN 3 , некоторые азиды при нагревании или ударе сильно взрываются. На этом основано применение азида свинца в качестве детонатора, т.е. вещества, взрыв которого вызывает мгновенное разложение других взрывчатых веществ.

Кислотная функция HN 3 (т. пл. -80°С, т. кип. +36°С) характеризуется значением K = 3 ·10-5. Ее взрывной распад идет по реакции:

2NH 3 = H 2 + 3N 2 + 142 ккал

Безводная азотистоводородная кислота способна взрываться даже просто от сотрясения сосуда. Напротив, в разбавленном водном растворе она при хранении практически не разлагается. Пары HN 3 очень ядовиты, а ее водные растворы вызывают воспаление кожи. Азиды, как правило, бесцветны.

В лабораториях азот можно получать по реакции разложения нитрита аммония:

NH 4 NO 2 > N 2 ^ + 2H 2 O+Q

Реакция экзотермическая, идёт с выделением 80 ккал (335 кДж), поэтому требуется охлаждение сосуда при её протекании (хотя для начала реакции требуется нагревание нитрита аммония).

Практически эту реакцию выполняют, добавляя по каплям насыщенный раствор нитрита натрия в нагретый насыщенный раствор сульфата аммония, при этом образующийся в результате обменной реакции нитрит аммония мгновенно разлагается.

Выделяющийся при этом газ загрязнён аммиаком, оксидом азота (I) и кислородом, от которых его очищают, последовательно пропуская через растворы серной кислоты, сульфата железа (II) и над раскалённой медью. Затем азот осушают.

Ещё один лабораторный способ получения азота - нагревание смеси дихромата калия и сульфата аммония (в соотношении 2:1 по массе). Реакция идёт по уравнениям:

K 2 Cr 2 O 7 + (NH 4) 2 SO 4 = (NH 4) 2 Cr 2 O 7 + K 2 SO 4

(NH 4) 2 Cr 2 O 7 >(t) Cr 2 O 3 + N 2 ^ + 4H 2 O

Самый чистый азот можно получить разложением азидов металлов:

2NaN 3 >(t) 2Na + 3N 2 ^

Так называемый «воздушный», или «атмосферный» азот, то есть смесь азота с благородными газами, получают путём реакции воздуха с раскалённым коксом:

O 2 + 4N 2 + 2C > 2CO + 4N 2

При этом получается так называемый «генераторный», или «воздушный», газ-сырьё для химических синтезов и топливо. При необходимости из него можно выделить азот, поглотив монооксид углерода.

Молекулярный азот в промышленности получают фракционной перегонкой жидкого воздуха. Этим методом можно получить и «атмосферный азот». Также широко применяются азотные установки, в которых используется метод адсорбционного и мембранного газоразделения.

Один из лабораторных способов - пропускание аммиака над оксидом меди (II) при температуре ~700°С:

2NH3 + 3CuO > N2^ + 3H2O + 3Cu

Аммиак берут из его насыщенного раствора при нагревании. Количество CuO в 2 раза больше расчётного. Непосредственно перед применением азот очищают от примеси кислорода и аммиака пропусканием над медью и её оксидом (II) (тоже ~700°C), затем сушат концентрированной серной кислотой и сухой щёлочью. Процесс происходит довольно медленно, но он того стоит: газ получается весьма чистый.

Применяемая технология

Генератор извлекает азот, имеющийся в окружающем воздухе и из других газов, применяя технологию адсорбции с колебаниями давления. Во время процесса адсорбции с колебаниями давления сжатый чистый окружающий воздух подводится к молекулярному ситу, которое позволяет азоту пройти внутрь как получаемый газ, но адсорибрует другие газы. Сито пропускает адсорбированные газы в атмосферу, когда выходной клапан закрыт, а давление фильтрации возвращается к давлению окружающей среды. Затем фильтрующий слой прочищается азотом перед тем, как вводить свежий сжатый воздух для нового цикла производства. Для того, чтобы гарантировать постоянный поток продукта, генераторы азота используют два молекулярных фильтрующих слоя, которые подключаются альтернативно между адсорбционными и регенерирующими фазами. При нормальных рабочих условиях и при правильном обслуживании молекулярные фильтрующие слои имеют почти бессрочный срок службы. Технология адсорбции с колебаниями давления имеет несколько международных патентов и соответствие стандартам рынка по исполнению и эффективности.

Компоновка оборудования

Для того, чтобы генератор азота работал автоматически, необходимы следующие составные компоненты:

Подача сжатого воздуха

Подача определенного количества сжатого воздуха и определенного качества, описанного в разделе предложении. Минимальное количество свободной подачи сжатого воздуха в м 3 /мин при 20°С равно среднему потреблению воздуха генератором азота в Нм 3 /мин, увеличенному на соответствующий процент для компенсации влияния окружающего воздуха и допусков на исполнение воздушного компрессора при расчетных условиях. Система сжатия воздуха будет включена в объем поставки, который будет состоять из воздушного компрессора и рефрижераторной сушилки воздуха.

Воздушные фильтры

Комплект фильтров грубой и высокой степени очистки и активированный угольный фильтр всегда включены в объем поставки. Воздушные фильтры необходимо устанавливать между системой подачи сжатого воздуха и воздушным ресивером, чтобы убедиться, что генератор азота будет получать необходимое минимальное количество.

Воздушный ресивер

Воздушный ресивер устанавливается между воздушными фильтрами и азотным генератором. Принципиальная задача воздушного ресивера - это гарантия подачи достаточного количества свежего воздуха на только что восстановленный фильтрующий слой генератора азота за короткий промежуток времени. Если система сжатого воздуха включена в объем поставки, размеры объема воздушного ресивера будут меняться до удовлетворительных для процесса и сжатия воздуха (макс. нагрузка / циклы без нагрузки).

Ресивер азота

Поток продукции генератора азота собирается в одном ресивере азота. Ресивер азота необходимо установить в непосредственной близости от генератора азота. Наличие ресивера азота гарантирует достаточное противодавление для процесса и постоянного потока азота к конечному заказчику. Если специально не указано, объем ресивера азота рассчитывается на основе предположения о постоянной динамике потребления применением Заказчика в течение продолжительного времени.

Преимущества:

Безопасность

Низкие рабочие давления, безопасное хранение. Нет необходимости в тяжелых газовых баллонах высокого давления. От опасного хранения жидкого азота можно отказаться.

Экономность

Нет расходов на распределение и обработку. Получение азота на месте (пром.площадке) генераторами азота экономит расходы на обработку и хранение в газовых баллонах высокого давления и предотвращает расходы на аренду, транспортировку и потери на испарение у пользователей.

Низкие эксплуатационные расходы.

Предлагаемый процесс имеет более эффективное разделение чем другие системы на рынке. Благодаря этому потребность в подаче воздуха падает, то есть 10 - 25% экономии энергии по сравнению со сравнимыми системами. Благодаря уменьшению вращающихся частей до минимума и использованию высококачественных элементов расходы на обслуживание остаются на низком уровне в течение всего срока службы генератора.

Удобство

Простота установки и обслуживания. У генераторов азота вход воздуха и выход азота находятся на одной стороне. Это означает простую установку, даже при малых углах цеха. Высокая надежность благодаря уменьшенному количеству вращающихся частей и высококачественных компонентов.

Гарантированное качество азота

Отсутствие риска недостаточной чистоты азота, автоматическое возобновление процесса. Генераторы азота обладают уникальной системой контроля: в случае если чистота азота не совпадает с указанным значением, ПЛК автоматически закрывает поток производства азота к выходу применения заказчика и открывают сбросной клапан некондиционного азота. Система будет пробовать запустить процесс, и когда чистота азота достигнет необходимого результата, сбросной клапан закроется, а клапан получения азота снова откроется. Полностью автоматическая и не сопровождаемая оператором процедура, ручной повторный запуск не требуется.

Проектные условия

Производительность 1000 нм³/ч (2 x 500 нм³/ч)
Содержание остаточного кислорода и производимом газе £0,1% об.
Давление подачи продукта 5,5 бар изб.
Точка росы продукта £-40 °С при 1 атм.
Расход воздуха на входе 4392,0 нм³/ч (2 x 2196.0 нм³/ч)
Макс. уровень шума 85 дБ (А) на расстоянии 1 метр
Планируемые условия окружающей среды
Барометрическое давление 1013,25 мбар а
Высота расположения 0 м над уровнем моря
Температура воздуха 20 °С
Относительная влажность 65%
Потребление воздуха на входе
Давление
Температура
Групповой состав углеводородов <6,25 мг/м³ или 5 ppmV
Частицы <5 мг/м³ при макс. 3 мкм
Точка росы £+3 °С при 7 бар изб.
Условия на площадке
Система электроснабжения 400 / 230 В переменный ток, 50 Гц
Классификация зоны неклассифицированная зона / безопасная зона
размещение в помещении с хорошей вентиляцией

Данные приведены для идеального режима работы, допуск ±5%


Размеры, вес

Параметры энергопотребления

Допуск на все указанные значения: ± 10%

Объем поставки

4 воздушных компрессора

  • ротационный винтовой компрессор с впрыском масла

4 воздухоосушилки

  • рефрижераторный воздухоосушитель

2 воздушных ресивера

  • вертикальная емкость высокого давления из углеродистой стали
  • объем: 3000 л

фильтры сжатого воздуха

Два комплекта внешних фильтров сжатого воздуха, устанавливаются перед воздушным ресивером, комплект состоит из следующих фильтров:

  • один коалесцирующий фильтр первичной очистки (эффективность 99,9999%, 1,0 µ - ≤ 0,5 мг/м³) с устройством для слива конденсата поплавкового типа;
  • один коалесцирующий фильтр тонкой очистки (эффективность 99,9999%, 0,01 µ - ≤ 0,1 мг/м³) с устройством для слива конденсата поплавкового типа;
  • один активированный угольный фильтр (остаточное масло ≤ 0,005 мг/м³).

два генератора азота

Два азотных генератора, полностью предварительно смонтированы, с установленными проводами на покрашенной раме из углеродистой стали, каждый оснащен следующими компонентами:

  • 6 адсорбционных башен, каждая наполнена углеродным молекулярным ситом. Углеродное молекулярное сито будет производства США, Европы или Японии. Изготовленные в Китае или Индии сита не применяются;
  • Глушитель отработанного газа, установлен для приглушения отходящего газа до расчетного уровня шума;
  • Комплект электро-пневматических технологических клапанов и дросселей, вкл. соленоидные клапаны;
  • 1 некондиционный продувочный трубопровод для азота с регулирующим клапаном соленоидного управления;
  • Комплект предохранительных клапанов, настроенных на соответствующий уровень давления;
  • Все трубопроводы и электрокабели для соединения;
  • Локальные датчики давления;
  • Одна (1) система контроля для полностью автоматической работы генератора, с полной внутренней проводной обводкой и состоящая из следующих позиций:
    • Один ПЛК (Rockwell / Allen Bradley Micro 850 ПЛК) с соединением Ethernet / IP для коммуникации с удаленной системой управления заказчика;
    • Один сенсорный графический интерфейс пользователя (Rockwell / Allen Bradley С400), отображающий значения реального времени релевантных параметров и возможные аварийные сообщения для прямой диагностики;
    • Все трубопроводы, клапана, контрольно-измерительные приборы и система управления «под ключ», монтированные на раме из углеродистой стали;
    • Один (1) автономный анализатор остаточного азота с датчиком из диоксида циркония;
    • Один автономный электронный расходомер продукта.

два (2) ресивера азота

  • вертикальная емкость высокого давления из углеродистой стали;
  • предохранительные клапаны, установленные на соответствующий уровень давления
  • объем: 3000 л
  • макс рабочее давление: 11,0 бар изб

Применяемые стандарты

  1. Директива 2009/105/EC для простых сосудов под давлением
  2. Европейская Директива 97/23/ЕС,EN 13445, EN 13480 по оборудованию, работающему под давлением
  3. Директива 2004/108/EC по электромагнитной совместимости
  4. Директива ЕС 2006/95/EC по низковольтному электрооборудованию
  5. Директива о машинном оборудовании 2006/42/EC

Примечание

При требуемой производительности невозможно модульное исполнение.

Как происходит получение азота?

Газ выделяется непосредственно из атмосферного воздуха. Сегодня используют три основных способа получения азота – адсорбционный, мембранный и криогенный. Каждый из методов имеет свои достоинства и недостатки.


Применение установок для получения азота

Азот, полученный методом очистки атмосферного воздуха, востребован во множестве отраслей промышленности. Газ используется для защиты различных веществ, способных терять свойства при контакте с кислородом. Получение азота в промышленных количествах дает возможность использовать газ при выполнении самых разных работ, начиная от устранения последствий аварий на нефтепроводах и заканчивая производством полупроводниковых приборов.

Газ применяется в:

  • фармацевтической отрасли,
  • металлургии,
  • пищевой промышленности,
  • сельском хозяйстве.

Внедрение современных установок для получения азота способствует снижению себестоимости и повышает общее качество технологического процесса.