Стройка и ремонт - Информационный портал

Практически важные свойства фенола. Получение фенола. Строение, свойства и применение фенола. Вредные свойства фенола

Различают одно-, двух-, трехатомные фенолы в зависимости от количества ОН-групп в молекуле (рис.1)

Рис. 1. ОДНО-, ДВУХ- И ТРЕХАТОМНЫЕ ФЕНОЛЫ

В соответствии с количеством конденсированных ароматических циклов в молекуле различают (рис. 2) сами фенолы (одно ароматическое ядро – производные бензола), нафтолы (2 конденсированных ядра – производные нафталина), антранолы (3 конденсированных ядра – производные антрацена) и фенантролы (рис. 2).

Рис. 2. МОНО- И ПОЛИЯДЕРНЫЕ ФЕНОЛЫ

Номенклатура спиртов.

Для фенолов широко используют тривиальные названия, сложившиеся исторически. В названиях замещенных моноядерных фенолов используются также приставки орто- , мета- и пара -, употребляемые в номенклатуре ароматических соединений. Для более сложных соединений нумеруют атомы , входящие в состав ароматических циклов и с помощью цифровых индексов указывают положение заместителей (рис. 3).

Рис. 3. НОМЕНКЛАТУРА ФЕНОЛОВ . Замещающие группы и соответствующие цифровые индексы для наглядности выделены различными цветами.

Химические свойства фенолов.

Бензольное ядро и ОН-группа, объединенные в молекуле фенола, влияют друг на друга, существенно повышая реакционную способность друг друга. Фенильная группа оттягивает на себя неподеленную электронную пару от атома кислорода в ОН-группе (рис. 4). В результате на атоме Н этой группы увеличивается частичный положительный заряд (обозначен значком d+), полярность связи О–Н возрастает, что проявляется в увеличении кислотных свойств этой группы. Таким образом, в сравнении со спиртами, фенолы представляют собой более сильные кислоты. Частичный отрицательный заряд (обозначен через d–), переходя на фенильную группу, сосредотачивается в положениях орто- и пара- (по отношению к ОН-группе). Эти реакционные точки могут атаковаться реагентами, тяготеющими к электроотрицательным центрам, так называемыми электрофильными («любящими электроны») реагентами.

Рис. 4. РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОННОЙ ПЛОТНОСТИ В ФЕНОЛЕ

В итоге для фенолов возможны два типа превращений: замещение атома водорода в ОН-группе и замещение Н-атомобензольном ядре. Пара электронов атома О, оттянутая к бензольному кольцу, увеличивает прочность связи С–О, поэтому реакции, протекающие с разрывом этой связи, характерные для спиртов, для фенолов не типичны.

1. Реакции замещения атома водорода в ОН-группе. При действии на фенолы щелочей образуются феноляты (рис. 5А), каталитическое взаимодействие со спиртами приводит к простым эфирам (рис. 5Б), а в результате реакции с ангидридами или хлорангидридами карбоновых кислот образуются сложные эфиры (рис. 5В). При взаимодействии с аммиаком (повышенная температура и давление) происходит замена ОН-группы на NH 2 , образуется анилин, (рис. 5Г), восстанавливающие реагенты превращают фенол в бензол (рис. 5Д)

2. Реакции замещения атомов водорода в бензольном кольце.

При галогенировании, нитровании, сульфировании и алкилировании фенола атакуются центры с повышенной электронной плотностью (рис.4), т.е. замещение проходят преимущественно в орто- и пара- положениях (рис.6).

При более глубоком протекании реакции происходит замещение двух и трех атомов водорода в бензольном кольце.

Особое значение имеют реакции конденсации фенолов с альдегидами и кетонами, по существу, это алкилирование, проходящее легко и в мягких условиях (при 40–50° С, водная среда в присутствии катализаторов), при этом атом углерода в виде метиленовой группы СН 2 или замещенной метиленовой группы (CНR либо CR 2) встраивается между двумя молекулами фенола. Часто такая конденсация приводит к образованию полимерных продуктов (рис. 7).

Двухатомный фенол (торговое название бисфенол А, рис.7), используют в качестве компонента при получении эпоксидных смол. Конденсация фенола с формальдегидом лежит в основе производства широко применяемых феноло-формальдегидных смол (фенопласты).

Способы получения фенолов.

Фенолы выделяют из каменноугольной смолы, а также из продуктов пиролиза бурых углей и древесины (деготь). Промышленный способ получения самого фенола С 6 Н 5 ОН основан на окислении ароматического углеводорода кумола (изопропилбензол) кислородом воздуха с последующим разложением получающейся гидроперекиси, разбавленной H 2 SO 4 (рис. 8А). Реакция проходит с высоким выходом и привлекательна тем, что позволяет получить сразу два технически ценных продукта – фенол и ацетон. Другой способ – каталитический гидролиз галогензамещенных бензолов (рис. 8Б).

Рис. 8. СПОСОБЫ ПОЛУЧЕНИЯ ФЕНОЛА

Применение фенолов.

Раствор фенола используют в качестве дезинфицирующего средства (карболовая кислота). Двухатомные фенолы – пирокатехин, резорцин (рис. 3), а также гидрохинон (пара- дигидроксибензол) применяют как антисептики (антибактериальные обеззараживающие вещества), вводят в состав дубителей для кожи и меха, как стабилизаторы смазочных масел и резины, а также для обработки фотоматериалов и как реагенты в аналитической химии.

В виде отдельных соединений фенолы используются ограниченно, зато их различные производные применяют широко. Фенолы служат исходными соединениями для получения разнообразных полимерных продуктов – феноло-альдегидных смол (рис. 7), полиамидов, полиэпоксидов. На основе фенолов получают многочисленные лекарственные препараты, например, аспирин, салол, фенолфталеин, кроме того, красители, парфюмерные продукты, пластификаторы для полимеров и средства защиты растений.

Михаил Левицкий

Профильный химико-биологический класс

Тип урока: урок изучения нового материала.

Методы ведения урока:

  • словесные (беседа, объяснение, рассказ);
  • наглядные (компьютерная презентация);
  • практические (демонстрационные опыты, лабораторные опыты).

Цели урока: Обучающие цели: на примере фенола конкретизировать знания учащихся об особенностях строения веществ, принадлежащих к классу фенолы, рассмотреть зависимость взаимного влияния атомов в молекуле фенола на его свойства; познакомить учащихся с физическими и химическими свойствами фенола и некоторых его соединений, изучить качественные реакции на фенолы; рассмотреть нахождение в природе, применение фенола и его соединений, их биологическую роль

Воспитывающие цели: Создать условия для самостоятельной работы учащихся, укреплять навыки работы учащихся с текстом, выделять основное в тексте, выполнять тесты.

Развивающие цели: Создать на уроке диалоговое взаимодействие, содействовать развитию умений учащихся высказывать свое мнение, выслушивать товарища, задавать друг другу вопросы и дополнять выступления друг друга.

Оборудование: мел, доска, экран, проектор, компьютер, электронные носители, учебник «Химия», 10 кл., О.С. Габриелян, Ф.Н. Маскаев, учебник «Химия: в тестах, задачах и упражнениях», 10 кл., О.С. Габриелян, И.Г. Остроумов.

Демонстрация: Д. 1. Вытеснение фенола из фенолята натрия угольной кислотой.

Д. 2. Взаимодействие фенола и бензола с бромной водой (видеоролик).

Д. 3. Реакция фенола с формальдегидом.

Лабораторный опыт: 1. Растворимость фенола в воде при обычной и повышенной температуре.

2. Взаимодействие фенола и этанола с раствором щелочи.

3. Реакция фенола с FeCl 3 .

Скачать:


Предварительный просмотр:

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«ГИМНАЗИЯ №5»

г. ТЫРНЫАУЗА КБР

Открытый урок-исследование по химии

Учитель химии: Грамотеева С.В.

I квалификационной категории

Класс: 10 «А», химико-биологический

Дата: 14.02.2012

Фе нол: строение, физические и химические свойства фено ла.

Примене ние фенола.

Профильный химико-биологический класс

Тип урока: урок изучения нового материала.

Методы ведения урока:

  1. словесные (беседа, объяснение, рассказ);
  2. наглядные (компьютерная презентация);
  3. практические (демонстрационные опыты, лабораторные опыты).

Цели урока: Обучающие цели: на примере фенола конкретизировать знания учащихся об особенностях строения веществ, принадлежащих к классу фенолы, рассмотреть зависимость взаимного влияния атомов в молекуле фенола на его свойства; познакомить учащихся с физическими и химическими свойствами фенола и некоторых его соединений, изучить качественные реакции на фенолы; рассмотреть нахождение в природе, применение фенола и его соединений, их биологическую роль

Воспитывающие цели: Создать условия для самостоятельной работы учащихся, укреплять навыки работы учащихся с текстом, выделять основное в тексте, выполнять тесты.

Развивающие цели: Создать на уроке диалоговое взаимодействие, содействовать развитию умений учащихся высказывать свое мнение, выслушивать товарища, задавать друг другу вопросы и дополнять выступления друг друга.

Оборудование: мел, доска, экран, проектор, компьютер, электронные носители, учебник «Химия», 10 кл., О.С. Габриелян, Ф.Н. Маскаев, учебник «Химия: в тестах, задачах и упражнениях», 10 кл., О.С. Габриелян, И.Г. Остроумов.

Демонстрация: Д. 1. Вытеснение фенола из фенолята натрия угольной кислотой.

Д. 2. Взаимодействие фенола и бензола с бромной водой (видеоролик).

Д. 3. Реакция фенола с формальдегидом.

Лабораторный опыт: 1. Растворимость фенола в воде при обычной и повышенной температуре.

3. Реакция фенола с FeCl 3 .

ХОД УРОКА

  1. Организационный момент.
  2. Подготовка к изучению нового материала.
  1. Фронтальный опрос:
  1. Какие спирты называются многоатомными? Приведите примеры.
  2. Каковы физические свойства многоатомных спиртов?
  3. Какие реакции характерны для многоатомных спиртов?
  4. Напишите качественные реакции, характерные для многоатомных спиртов.
  5. Приведите примеры реакции этерификации этиленгликоля и глицерина с органическими и неорганическими кислотами. Как называются продукты реакций?
  6. Напишите реакции внутримолекулярной и межмолекулярной дегидратации. Назовите продукты реакций.
  7. Напишите реакции взаимодействия многоатомных спиртов с галогеноводородами. Назовите продукты реакций.
  8. Каковы способы получения этиленгликоля?
  9. Каковы способы получения глицерина?
  10. Каковы области применения многоатомных спиртов?
  1. Проверка дом. задания: стр. 158, упр. 4-6 (выборочно у доски).
  1. Изучение нового материала в форме беседы.

На слайде представлены структурные формулы органических соединений. Вам необходимо назвать эти вещества и, определить к какому классу они принадлежат.

Фенолы – это вещества, в которых гидроксогруппа соединена непосредственно с бензольным кольцом.

Назовите молекулярную формулу фенил-радикала: C 6 H 5 – фенил. Если к этому радикалу присоединить одну или несколько гидроксильных групп, то мы получим фенолы. Обратите внимание на то, что гидроксильные группы должны быть непосредственно связаны с бензольным кольцом, в противном случае мы получим ароматические спирты.

Классификация

Так же как и спирты, фенолы классифицируют по атомности , т.е. по количеству гидроксильных групп.

  1. Одноатомные фенолы, содержат в молекуле одну гидроксильную группу:
  1. Многоатомные фенолы содержат в молекулах более одной гидроксильной группы:

Самый главный представитель этого класса – фенол. Название этого вещества и легло в основу названия всего класса – фенолы.

Многие из вас в скором будущем станут врачами, поэтому о феноле они должны знать как можно больше. В настоящее время можно выделить несколько основных направлений использования фенола. Один из них – производство лекарственных средств. Большинство этих лекарств - производные получаемой из фенола салициловой кислоты: o-HOC 6 H 4 COOH. Самое распространенное жаропонижающее - аспирин не что иное, как ацетилсалициловая кислота. Эфир салициловой кислоты и самого фенола тоже хорошо известен под названием салол. При лечении туберкулеза применяют парааминосалициловую кислоту (сокращенно ПАСК). Ну и, наконец, при конденсации фенола с фталевым ангидридом получается фенолфталеин, он же пурген.

Фенолы – органические вещества, молекулы которых содержат радикал фенил, связанные с одной или несколькими гидроксигруппами.

Как вы считаете, почему фенолы выделили в отдельный класс, хотя они содержат ту же гидроксильную группу, что и спирты?

Их свойства сильно отличаются от свойств спиртов. Почему?

Атомы в молекуле взаимно влияют друг на друга. (Теория Бутлерова).

Рассмотрим свойства фенолов на примере простейшего фенола.

История открытия

В 1834г. немецкий химик-органик Фридлиб Рунге обнаружил в продуктах перегонки каменноугольной смолы белое кристаллическое вещество с характерным запахом. Ему не удалось определить состав вещества, сделал это в 1842г. Огюст Лоран. Вещество обладало выраженными кислотными свойствами и было производным открытого незадолго до этого бензола. Лоран назвал его бензол феном, поэтому новая кислота получила название фениловой. Шарль Жерар считал полученное вещество спиртом и предложил называть его фенолом.

Физические свойства

Лабораторный опыт: 1. Изучение физических свойств фенола.

Инструктивная карточка

1.Рассмотрите выданное вам вещество и пишите его физические свойства.

2.Растворите вещество в холодной воде.

3.Слегка нагрейте пробирку. Отметьте наблюдения.

Фенол C 6 H 5 OH (карболовая кислота) - бесцветное кристаллическое вещество, t пл = 43 0 C, t кип = 182 0 C, на воздухе окисляется и становится розовым, при обычной температуре ограниченно растворим в воде, выше 66 °C смешивается с водой в любых соотношениях. Фенол - токсичное вещество, вызывает ожоги кожи, является антисептиком, поэтому с фенолом необходимо обращаться осторожно !

Сам фенол и его пары ядовиты. Но существуют фенолы растительного происхождения, содержащиеся, например, в чае. Они благоприятно действуют на организм человека.

Следствием полярности связи О–Н и наличия неподеленных пар электронов на атоме кислорода является способность гидроксисоединений к образованию водородных связей

Это объясняет, почему у фенола довольно высокие температуры плавления (+43) и кипения (+182). Образование водородных связей с молекулами воды способствует растворимости гидроксисоединений в воде.

Способность растворяться в воде уменьшается с увеличением углеводородного радикала и от многоатомных гидроксисоединений к одноатомным. Метанол, этанол, пропанол, изопропанол, этиленгликоль и глицерин смешиваются с водой в любых соотношениях. Растворимость фенола в воде ограничена.

Изомерия и номенклатура

Возможны 2 типа изомерии :

  1. изомерия положения заместителей в бензольном кольце;
  2. изомерия боковой цепи (строения алкильного радикала и числа радикалов ).

Химические свойства

Посмотрите внимательно на структурную формулу фенола и ответьте на вопрос: «Что такого особенного в феноле, что его выделили в отдельный класс?»

Т.е. фенол содержит и гидроксильную группу и бензольное кольцо, которые, согласно третьему положению теории А.М. Бутлерова, влияют друг на друга.

Свойствами каких соединений формально должен обладать фенол? Правильно, спиртов и бензола.

Химические свойства фенолов обусловлены именно наличием в молекулах функциональной гидроксильной группы и бензольного кольца. Поэтому химические свойства фенола можно рассмотреть как по аналогии со спиртами, так и по аналогии с бензолом.

Вспомните, с какими веществами реагируют спирты. Посмотрим видеоролик взаимодействие фенола с натрием.

  1. Реакции с участием гидроксильной группы.
  1. Взаимодействие мо щелочными металлами (сходство со спиртами).

2C 6 H 5 OH + 2Na → 2C 6 H 5 ONa + H 2 (фенолят-натрия)

Вспомните реагируют ли спирты со щелочами? Нет, а фенол? Проведем лабораторный опыт.

Лабораторный опыт: 2. Взаимодействие фенола и этанола с раствором щелочи.

1. В первую пробирку налейте раствор NaOH и 2-3 капли фенолфталеина, затем добавьте 1\3 часть раствора фенола.

2. Во вторую пробирку добавьте раствор NaOH и 2-3 капли фенолфталеина, затем добавьте 1\3 часть этанола.

Оформите наблюдения и напишите уравнения реакций.

  1. Атом водорода гидроксильной группы фенола обладает кислотным характером. Кислотные свойства у фенола выражены сильнее, чем у воды и спиртов. В отличие от спиртов и воды фенол реагирует не только со щелочными металлами, но со щелочами с образованием фенолятов:

C 6 H 5 OH + NaOH → C 6 H 5 ONa + H 2 O

Однако кислотные свойства у фенолов выражены слабее, чем у неорганических и карбоновых кислот. Так, например, кислотные свойства фенола примерно в 3000 раза меньше, чем у угольной кислоты, поэтому пропуская через раствор фенолята натрия углекислый газ, можно выделить свободный фенол (демонстрация ):

C 6 H 5 ONa + H 2 O + CO 2 → C 6 H 5 OH + NaHCO 3

Добавление к водному раствору фенолята натрия соляной или серной кислоты также приводит к образованию фенола:

C 6 H 5 ONa + HCl → C 6 H 5 OH + NaCl

Феноляты используются в качестве исходных веществ для получения простых и сложных эфиров:

C 6 H 5 ONa + C 2 H 5 Br → C 6 H 5 OC 2 H 5 + NaBr (этифениловый эфир)

C 6 H 5 ONa + CH 3 COCl → CH 3 – COOC 6 H 5 + NaCl

Ацетилхлорид фенилацетат, фениловый эфир уксусной кислоты

Как можно объяснить то, что спирты с растворами щелочей не реагируют, а фенол реагирует?

Фенолы представляют собой полярные соединения (диполи). Бензольное кольцо является отрицательным концом диполя, группа - OH - положительным. Дипольный момент направлен в сторону бензольного кольца.

Бензольное кольцо перетягивает электроны неподеленной пары электронов кислорода. Смещение неподелённой пары электронов атома кислорода в сторону бензольного кольца приводит к увеличению полярности связи O-H. Увеличение полярности связи O-H под действием бензольного ядра и появление достаточно большого положительного заряда на атоме водорода приводит к тому, что молекула фенола диссоциирует в водных растворах по кислотному типу:

C 6 H 5 OH ↔ C 6 H 5 O - + H + (фенолят-ион)

Фенол является слабой кислотой . В этом состоит главное отличие фенолов от спиртов , которые являются неэлектролитами .

  1. Реакции с участием бензольного кольца

Бензольное кольцо изменило свойства гидроксогруппы!

Есть ли обратное влияние – изменились ли свойства бензольного кольца?

Проведем еще один опыт.

Демонстрация: 2. Взаимодействие фенола с бромной водой (видеоролик).

Реакции замещения . Реакции электрофильного замещения в бензольном кольце фенолов протекают значительно легче, чем у бензола, и в более мягких условиях, благодаря наличию гидроксильного заместителя.

  1. Галогенирование

Особенно легко происходит бромирование в водных растворах. В отличие от бензола, для бромирование фенола не требуется добавление катализатора (FeBr 3 ). При взаимодействии фенола с бромной водой образуется белый осадок 2,4,6-трибромфенола:

  1. Нитрование также происходит легче, чем нитрование бензола. Реакция с разбавленной азотной кислотой идет при комнатной температуре. В результате образуется смесь орто- и параизомеров нитрофенола:

О-нитрофенол п-нитрофенол

При использовании концентрированной азотной кислоты образуется 2,4,6-тринитрофенол – пикриновая кислота, взрывчатое вещество:

Как вы видите фенол реагирует с бромной водой с образованием белого осадка, а вот бензол не реагирует. Фенол как и бензол реагирует с азотной кислотой, но не с одной молекулой а сразу с тремя. Чем это объясняется?

Приобретя избыток электронной плотности, бензольное кольцо дестабилизировалось. Отрицательный заряд сосредоточен в орто- и пара-положениях, поэтому эти положения наиболее активны. Замещение атомов водорода происходит именно здесь.

Фенол также как и бензол реагирует с серной кислотой, но с тремя молекулами.

  1. Сульфирование

Соотношение орто- и пара-измеров определяется температурой реакции: при комнатной температуре образуется в основном о-фенолсульфоксилота, при температуре 100 0 С – пара-изомер.

  1. Поликонденсация фенола с альдегидами, в част ности с формальдегидом, происходит с образовани ем продуктов реакции - фенолоформальдегидных смол и твердых полимеров (демонстрация ):

Реакция поликонденсации, т. е. реакция получения полимера, протекающая с выделением низкомолекулярного продукта (например, воды, аммиака и др.), может продолжаться и далее (до полного израсходования одного из реагентов) с образованием огромных макромолекул. Процесс можно описать суммарным уравнением:

Образование линейных молекул происходит при обычной температуре. Проведение же этой реакции при нагревании приводит к тому, что образующие имеет разветвленное строение, он твердый и нерастворимый в воде. В результате нагревания фенолоформальдегидной смолы линейного строения с избытком альдегида получаются твердые пластические массы с уникальными свойствами.

Полимеры на основе фенолоформальдегидных смол применяют для изготовления лаков и красок. Пластмассовые изделия, изготовленные на основе этих смол, устойчивы к нагреванию, охлаждению, действию щелочей и кислот, они также обладают высокими электрическими свойствами. Из полимеров на основе фенолоформальдегидных смол изготавливают наиболее важные детали электроприборов, корпуса силовых агрегатов и детали машин, полимерную основу печатных плат для радиоприборов.

Клеи на основе фенолоформальдегидных смол способны надежно соединять детали самой различной природы, сохраняя высочайшую прочность соединения в очень широком диапазоне температур. Такой клей применяется для крепления металлического цоколя ламп освещения в стеклянной колбе.

Все пластмассы с применением фенола опасны для человека и природы. Необходимо найти новый вид полимеров, безопасный для природы и легко разлагаемый в безопасные отходы. Это ваше будущее. Творите, изобретайте, не дайте опасным веществам погубить природу!”

Качественная реакция на фенолы

В водных растворах одноатомные фенолы взаимодействуют с FeCl 3 с образованием комплексных фенолятов, которые имеют фиолетовую окраску; окраска исчезает после прибавления сильной кислоты

Лабораторный опыт: 3. Реакция фенола с FeCl 3 .

В пробирку добавьте 1\3 часть раствора фенола и по каплям раствор FeCl 3 .

Оформите наблюдения.

Способы получения

  1. Кумольный способ.

В качестве исходного сырья используют бензол и пропилен, из которых получают изопропилбензол (кумол), подвергающийся дальнейшим превращениям.

Кумольный способ получения фенола (СССР, Сергеев П.Г., Удрис Р.Ю., Кружалов Б.Д., 1949 г.). Преимущества метода: безотходная технология (выход полезных продуктов > 99%) и экономичность. В настоящее время кумольный способ используется как основной в мировом производстве фенола.

  1. Из каменноугольной смолы.

Каменноугольную смолу, содержащую в качестве одно из компонентов фенол, обрабатывают вначале раствором щелочи (образуются феноляты), а затем кислотой:

C 6 H 5 OH + NaOH → C 6 H 5 ONa + H 2 O (фенолят натрия, промежуточный продукт)

C 6 H 5 ONa + H 2 SO 4 → C 6 H 5 OH + NaHSO 4

  1. Сплавление солей аренсульфокислот со щелочью:

300 0 C

С 6 Н 5 SO 3 Na + NaOH → C 6 H 5 OH + Na 2 SO 3

  1. Взаимодействие галогенопроизводных ароматических УВ со щелочами:

300 0 C, P, Cu

C 6 H 5 Cl + NaOH (8-10 % р-р) → C 6 H 5 OH + NaCl

или с водяным паром:

450-500 0 C, Al 2 O 3

C 6 H 5 Cl + H 2 O → C 6 H 5 OH + HCl

Биологическая роль соединений фенола

Положительная

Отрицательная (токсическое действие)

  1. лекарственные препараты (пурген, парацетамол)
  2. антисептики (3-5 % раствор –карболовая кислота)
  3. эфирные масла (обладают сильными бактерицидными и противовирусными свойствами, стимулируют иммунную систему, повышают артериальное давление: - анетол в укропе, фенхеле, анисе - карвакрол и тимол в чабреце - эвгенол в гвоздике, базилике

    ОПРЕДЕЛЕНИЕ

    Фенол (гидроксибензол, карболовая кислота) - простейший представитель класса фенолов.

    Структурная и химическая формула фенола

    Химическая формула: C 6 H 5 OH

    Брутто-формула: C 6 H 6 O

    Структурная формула:

    Молярная масса: 94,11г/моль

    Фенол является простейшим представителем класса фенолов – ароматических спиртов.

    Физические свойства. При обычных условиях – бесцветные кристаллы с характерным сладковато-приторным запахом (запах гуаши), розовеют на воздухе из-за окислительных процессов. Температура плавления +40,9°С.

    Хорошо растворим в органических растворителях (этаноле, диэтиловом эфире, ацетоне, CHCl 3 и др.), умеренно растворим в воде (6,7 г на 100 мл при 16°C, выше 66°C растворяется в воде неограниченно).

    Химические свойства

    Фенол является слабой кислотой, рК а = 9,98. Кислотные свойства выражены сильнее, чем у спиртов.

    Примеры решения задач по теме «фенол формула»

    ПРИМЕР 1

    Задание Какую фенола следует растворить в 125 г бензола, чтобы температура кристаллизации раствора была ниже температуры кристаллизации бензола на 1,7°С? Криоскопическая константа бензола равна 5,1°С.
    Решение По закону Рауля понижение температуры кристаллизации разбавленных растворов неэлектролитов равно:

    где С m – моляльная концентрация раствора, К – криоскопическая константа растворителя.

    Рассчитаем моляльную концентрацию фенола:

    Моляльная концентрация раствора фенола равна:

    Молярная масса фенола C 6 H 5 OH равна 94г/моль.

    Выразим массу фенола:

    Ответ Нужно растворить 3,88г фенола.

    ПРИМЕР 2

    Задание При взаимодействии смеси этилового спирта и фенола с избытком натрия выделилось 6,72 л (н.у.). Для полной нейтрализации этой же смеси потребовалось 25 мл 40%-ного раствора гидроксида калия с плотностью 1,4 г/мл. Определите процентный состав исходной смеси.
    Решение Запишем уравнения реакций.

    С натрием реагируют оба вещества:

    а с гидроксидом калия – только фенол:

    Масса раствора гидроксида калия равна:

    Масса гидроксида калия равна:

    Рассчитаем количество вещества гидроксида калия:

    По уравнению реакции:

    Количество вещества выделившегося водорода равно:

    1. Фенолы - производные ароматических углеводородов, в молекулах которых гидроксильная группа (- ОН) непосредственно связана с атомами углерода в бензольном кольце.

    2. Классификация фенолов

    Различают одно-, двух-, трехатомные фенолы в зависимости от количества ОН-групп в молекуле:

    В соответствии с количеством конденсированных ароматических циклов в молекуле различают сами фенолы (одно ароматическое ядро – производные бензола), нафтолы (2 конденсированных ядра – производные нафталина), антранолы (3 конденсированных ядра – производные антрацена) и фенантролы:

    3. Изомерия и номенклатура фенолов

    Возможны 2 типа изомерии:

    • изомерия положения заместителей в бензольном кольце
    • изомерия боковой цепи (строения алкильного радикала и числа радикалов)

    Для фенолов широко используют тривиальные названия, сложившиеся исторически. В названиях замещенных моноядерных фенолов используются также приставки орто- , мета- и пара -, употребляемые в номенклатуре ароматических соединений. Для более сложных соединений нумеруют атомы, входящие в состав ароматических циклов и с помощью цифровых индексов указывают положение заместителей

    4. Строение молекулы

    Фенильная группа C 6 H 5 – и гидроксил –ОН взаимно влияют друг на друга


    • неподеленная электронная пара атома кислорода притягивается 6-ти электронным облаком бензольного кольца, из – за чего связь О–Н еще сильнее поляризуется. Фенол - более сильная кислота, чем вода и спирты.
    • В бензольном кольце нарушается симметричность электронного облака, электронная плотность повышается в положении 2, 4, 6. Это делает более реакционноспособными связи С-Н в положениях 2, 4, 6. и – связи бензольного кольца.

    5. Физические свойства

    Большинство одноатомных фенолов при нормальных условиях представляют собой бесцветные кристаллические вещества с невысокой температурой плавления и характерным запахом. Фенолы малорастворимы в воде, хорошо растворяются в органических растворителях, токсичны, при хранении на воздухе постепенно темнеют в результате окисления.

    Фенол C 6 H 5 OH (карболовая кислота ) - бесцветное кристаллическое вещество на воздухе окисляется и становится розовым, при обычной температуре ограниченно растворим в воде, выше 66 °C смешивается с водой в любых соотношениях. Фенол - токсичное вещество, вызывает ожоги кожи, является антисептиком

    6. Токсические свойства

    Фенол ядовит. Вызывает нарушение функций нервной системы. Пыль, пары и раствор фенола раздражают слизистые оболочки глаз, дыхательных путей, кожу. Попадая в организм, Фенол очень быстро всасывается даже через неповрежденные участки кожи и уже через несколько минут начинает воздействовать на ткани головного мозга. Сначала возникает кратковременное возбуждение, а потом и паралич дыхательного центра. Даже при воздействии минимальных доз фенола наблюдается чихание, кашель, головная боль, головокружение, бледность, тошнота, упадок сил. Тяжелые случаи отравления характеризуются бессознательным состоянием, синюхой, затруднением дыхания, нечувствительностью роговицы, скорым, едва ощутимым пульсом, холодным потом, нередко судорогами. Зачастую фенол является причиной онкозаболеваний.

    7. Применение фенолов

    1. Производство синтетических смол, пластмасс, полиамидов

    2. Лекарственных препаратов

    3. Красителей

    4. Поверхностно-активных веществ

    5. Антиоксидантов

    6. Антисептиков

    7. Взрывчатых веществ

    8. Получение фенола в промышленности

    1). Кумольный способ получения фенола (СССР, Сергеев П.Г., Удрис Р.Ю., Кружалов Б.Д., 1949 г.). Преимущества метода: безотходная технология (выход полезных продуктов > 99%) и экономичность. В настоящее время кумольный способ используется как основной в мировом производстве фенола.

    2). Из каменноугольной смолы (как побочный продукт – выход мал):

    C 6 H 5 ONa+ H 2 SO 4 (разб) → С 6 H 5 – OH + NaHSO 4

    фенолят натрия

    (продукт обра ботки смолы едким натром)

    3). Из галогенбензолов :

    С 6 H 5 -Cl + NaOH t , p → С 6 H 5 – OH + NaCl

    4). Сплавлением солей ароматических сульфокислот с твёрдыми щелочами :

    C 6 H 5 -SO 3 Na+ NaOH t → Na 2 SO 3 + С 6 H 5 – OH

    натриевая соль

    бензолсульфокислоты

    9. Химические свойства фенола (карболовой кислоты)

    I . Свойства гидроксильной группы

    Кислотные свойства – выражены ярче, чем у предельных спиртов (окраску индикаторов не меняют):

    • С активными металлами -

    2C 6 H 5 -OH + 2Na → 2C 6 H 5 -ONa + H 2

    фенолят натрия

    • Со щелочами -

    C 6 H 5 -OH + NaOH (водн. р-р) ↔ C 6 H 5 -ONa + H 2 O

    ! Феноляты – соли слабой карболовой кислоты, разлагаются угольной кислотой –

    C 6 H 5 -ONa + H 2 O + С O 2 → C 6 H 5 -OH + NaHCO 3

    По кислотным свойствам фенол превосходит этанол в 10 6 раз. При этом во столько же раз уступает уксусной кислоте. В отличие от карбоновых кислот, фенол не может вытеснить угольную кислоту из её солей

    C 6 H 5 - OH + NaHCO 3 = реакция не идёт – прекрасно растворяясь в водных растворах щелочей, он фактически не растворяется в водном растворе гидрокарбоната натрия.

    Кислотные свойства фенола усиливаются под влиянием связанных с бензольным кольцом электроноакцепторных групп ( NO 2 - , Br - )

    2,4,6-тринитрофенол или пикриновая кислота сильнее угольной

    II . Свойства бензольного кольца

    1). Взаимное влияние атомов в молекуле фенола проявляется не только в особенностях поведения гидроксигруппы (см. выше), но и в большей реакционной способности бензольного ядра. Гидроксильная группа повышает электронную плотность в бензольном кольце, особенно, в орто- и пара- положениях (+М -эффект ОН-группы):

    Поэтому фенол значительно активнее бензола вступает в реакции электрофильного замещения в ароматическом кольце.

    • Нитрование . Под действием 20% азотной кислоты HNO 3 фенол легко превращается в смесь орто- и пара- нитрофенолов:

    При использовании концентрированной HNO 3 образуется 2,4,6-тринитрофенол (пикриновая кислота ):

    • Галогенирование . Фенол легко при комнатной температуре взаимодействует с бромной водой с образованием белого осадка 2,4,6-трибромфенола (качественная реакция на фенол):
    • Конденсация с альдегидами . Например:

    2). Гидрирование фенола

    C 6 H 5 -OH + 3H 2 Ni , 170º C → C 6 H 11 – OH циклогексиловый спирт (циклогексанол)

    Химические свойства фенолов определяются наличием в молекуле гидроксильной группы и бензольного кольца.

      Реакции по гидроксильной группе

    Фенолы, так же, как и алифатические спирты, обладают кислыми свойствами, т.е. способны образовывать соли – феноляты . Однако они более сильные кислоты и поэтому могут взаимодействовать не только со щелочными металлами (натрий, литий, калий), но и со щелочами и карбонатами:

    Константа кислотности рК а фенола равна 10. Высокая кислотность фенола связана с акцепторным свойством бензольного кольца (эффект сопряжения ) и объясняется резонансной стабилизацией образующегося фенолят-аниона. Отрицательный заряд на атоме кислорода фенолят-аниона за счет эффекта сопряжения может перераспределяться по ароматическому кольцу, этот процесс можно описать набором резонансных структур:

    Ни одна из этих структур в отдельности не описывает реального состояния молекулы, но их использование позволяет объяснять многие реакции.

    Феноляты легко взаимодействуют с галогеналканами и галогенангидридами:

    Взаимодействие солей фенола с галогеналканами – реакция О-алкилирования фенолов. Это способ получения простых эфиров (реакция Вильямсона, 1852 г.).

    Фенол способен взаимодействовать с галогенангидридами и ангидридами кислот с получением сложных эфиров (О-ацилирование):

    Реакция протекает в присутствии небольших количеств минеральной кислоты или при нагревании.

      Реакции по бензольному кольцу

    Гидроксил является электронодонорной группой и активирует орто - и пара -положения в реакциях электрофильного замещения:

    Галогенирование

    Галогенирование фенолов действием галогенов или галогенирующих агентов протекает с большой скоростью:

    Нитрование

    При действии азотной кислоты в уксусной кислоте (в присутствии небольшого количества серной кислоты) на фенол получается 2-нитрофенол:

    Под действием концентрированной азотной кислоты или нитрующей смеси фенол интенсивно окисляется, что приводит к глубокой деструкции его молекулы. При использовании разбавленной азотной кислоты нитрование сопровождается сильным осмолением несмотря на охлаждение до 0°С и приводит к образованию о- и п- изомеров с преобладанием первого из них:

    При нитровании фенола тетраоксидом диазота в инертном растворителе (бензол, дихлорэтан) образуется 2,4-динитрофенол:

    Нитрование последнего нитрующей смесью протекает легко и может служить методом синтеза пикриновой кислоты:

    Эта реакция идет с саморазогреванием.

    Пикриновую кислоту получают также через стадию сульфирования. Для этого обрабатывают фенол при 100°С избыточным количеством серной кислоты, получают 2,4-дисульфопроизводное, которое не выделяя из реакционной меси обрабатывают дымящей азотной кислотой:

    Введение двух сульфогрупп (также как и нитрогрупп) в бензольное ядро делает его устойчивым к окисляющему действию дымящей азотной кислоты, реакция не сопровождается осмолением. Такой метод получения пикриновой кислоты удобен для производства в промышленном масштабе.

    Сульфирование . Сульфирование фенола в зависимости от температуры протекает в орто - или пара -положение:

    Алкилирование и ацилирование по Фриделю-Крафтсу . Фенолы образуют с хлористым алюминием неактивные соли ArOAlCl 2 , поэтому для алкилирования фенолов в качестве катализаторов применяют протонные кислоты (H 2 SO 4) или металлооксидные катализаторы кислотного типа (Al 2 O 3). Это позволяет использовать в качестве алкилирующих агентов только спирты и алкены:

    Алкилирование протекает последовательно с образованием моно-, ди- и триалкилфенолов. Одновременно происходит кислотно-катализируемая перегруппировка с миграцией алкильных групп:

    Конденсация с альдегидами и кетонами . При действии щелочных или кислотных катализаторов на смесь фенола и альдегида жирного ряда происходит конденсация в о - и п -положениях. Эта реакция имеет очень большое практическое значение, так как лежит в основе получения важных пластических масс и лаковых основ. При обычной температуре рост молекулы за счет конденсации идет в линейном направлении:

    Если реакцию проводить при нагревании, начинается конденсация с образованием разветвленных молекул:

    В результате присоединения по всем доступным о - и п -положениям образуется трехмерный термореактивный полимер – бакелит. Бакелит отличается высоким электрическим сопротивлением и термостойкостью. Это один из первых промышленных полимеров.

    Реакция фенола с ацетоном в присутствии минеральной кислоты приводит к получению бисфенола:

    Последний используют для получения эпоксисоединений.

    Реакция Кольбе – Шмидта. Синтез фенилкарбоновых кислот.

    Феноляты натрия и калия реагируют с углекислым газом, образуя в зависимости от температуры орто- или пара-изомеры фенилкарбоновых кислот:

    Окисление

    Фенол легко окисляется под действием хромовой кислоты до п -бензохинона:

    Восстановление

    Восстановление фенола в циклогексанон используют для получения полиамида (найлон-6,6)