Стройка и ремонт - Информационный портал

Параметрические стабилизаторы напряжения и тока. Устройство и принцип работы. Расчет параметрических стабилизаторов напряжения. Простейший параметрический стабилизатор напряжения Балластный резистор для стабилитрона



Чтобы подобрать стабилитрон для схемы, показанной на рис. 3, нужно знать диапазон входных напряжений U1 и диапазон изменения нагрузки R Н.

Рис. 3. Схема включения стабилитрона.

Для примера рассчитаем сопротивление R и подберём стабилитрон для схемы на рис. 3 со следующими требованиями:

Итак, для начала рассчитаем значение сопротивления R. Минимальное напряжение на входе равно 11 В. При таком напряжении мы должны обеспечить ток на нагрузке не менее 100 мА (или 0,1 А). Закон Ома позволяет определить сопротивление резистора:

R Ц = U1 МИН / I Н.МАКС = 11 / 0,1 = 110 Ом То есть цепь для обеспечения заданного тока на нагрузке должна иметь сопротивление не более 110 Ом.

На стабилитроне падает напряжение 9 В (в нашем случае). Тогда при токе 0,1 А эквивалент нагрузки: R Э = U2 / I Н.МАКС = 9 / 0,1 = 90 Ом Тогда, для того чтобы обеспечить на нагрузке ток 0,1 А, гасящий резистор должен иметь сопротивление: R = R Ц – R Э = 110 – 90 = 20 Ом С учётом того, что сам стабилитрон тоже потребляет ток, можно выбрать несколько меньшее сопротивление из стандартного ряда Е24 ). Но, так как стабилитрон потребляет небольшой ток, этим значением в большинстве случаев можно пренебречь.

Теперь определим максимальный ток через стабилитрон при максимальном входном напряжении и отключенной нагрузке. Расчёт нужно выполнять именно при отключенной нагрузке, так как даже если у вас нагрузка будет всегда подключена, нельзя исключить вероятность того, что какой-нибудь проводок отпаяется и нагрузка отключится.

Итак, вычислим падение напряжения на резисторе R при максимальном входном напряжении:

U R.МАКС = U1 МАКС – U2 = 15 – 9 = 6 В А теперь определим ток через резистор R из того же закона Ома: I R.МАКС = U R.МАКС / R = 6 / 20 = 0,3 А = 300 мА Так как резистор R и стабилитрон VD включены последовательно, то максимальный ток через резистор будет равен максимальному току через стабилитрон (при отключенной нагрузке), то есть I R.МАКС = I VD.МАКС = 0,3 А = 300 мА Нужно ещё рассчитать мощность рассеивания резистора R. Но здесь это мы делать не будем, поскольку данная тема подробно описана в статье Резисторы .

А вот мощность рассеяния стабилитрона рассчитаем:

P МАКС = I VD.МАКС * U СТ = 0,3 * 9 = 2,7 Вт = 2700 мВт Мощность рассеяния – очень важный параметр, который часто забывают учесть. Если окажется, что мощность рассеяния на стабилитроне превысит максимально допустимую, то это приведёт к перегреву стабилитрона и выходу его из строя. Хотя при этом ток может быть в пределах нормы. Поэтому мощность рассеяния как для гасящего резистора R, так и для стабилитрона VD нужно всегда рассчитывать.

Осталось подобрать стабилитрон по полученным параметрам:

U СТ = 9 В – номинальное напряжение стабилизации
I СТ.МАКС = 300 мА – максимально допустимый ток через стабилитрон
Р МАКС = 2700 мВт – мощность рассеяния стабилитрона при I СТ.МАКС

По этим параметрам в справочнике находим подходящий стабилитрон. Для наших целей подойдёт, например, стабилитрон Д815В.

Надо сказать, что этот расчет довольно грубый, так как он не учитывает некоторые параметры, такие, например, как температурные погрешности. Однако в большинстве практических случаев описанный здесь способ подбора стабилитрона вполне подходит.

Стабилитроны серии Д815 имеют разброс напряжений стабилизации. Например, диапазон напряжений Д815В – 7,4…9,1 В. Поэтому, если нужно получить точное напряжение на нагрузке (например, ровно 9 В), то придётся опытным путём подобрать стабилитрон из партии нескольких однотипных. Если нет желания возиться с подбором «методом тыка», то можно выбрать стабилитроны другой серии, например серии КС190. Правда, для нашего случая они не подойдут, поскольку имеют мощность рассеивания не более 150 мВт. Для повышения выходной мощности стабилизатора напряжения можно использовать транзистор. Но об этом как-нибудь в другой раз…

И ещё. В нашем случае получилась довольная большая мощность рассеивания стабилитрона. И хотя по характеристикам для Д815В максимальная мощность 8000 мВт, рекомендуется устанавливать стабилитрон на радиатор, особенно если он работает в сложных условиях (высокая температура окружающей среды, плохая вентиляция и т.п.).

Если необходимо, то ниже вы можете выполнить описанные выше рассчёты для вашего случая

где напряжение на эмиттерном переходе транзистора, которое определяется по входной ВАХ.

Номинальное напряжение стабилитрона:

По справочно-информационной литературе выбираем тип стабилитрона с возможно меньшим динамическим сопротивлением и с соблюдением следующих условий:

условие (12) выполняется.

условие (13) выполняется.

Выбираем стабилитрон Д816Г. Стабилитрон кремниевый планарный средней мощности. Предназначен для стабилизации номинального напряжения в диапазоне от 35 В до 43В. выпускается в металлическом корпусе с жесткими выводами. Корпус стабилитрона в рабочем режиме служит отрицательным электродом(катодом).

Масса стабилитрона с комплектующими деталями не более 6 г.

Таблица 6. Параметры стабилитрона Д816Г.

номинальное напряжение стабилизации;

мощность, рассеиваемая стабилитроном.

динамическое сопротивление стабилитрона;

максимальный и минимальный ток стабилитрона при четком напряжении пробоя.

Резистор R5 задает уровень тока через стабилитрон. Обычно сопротивление резистора выбирают таким, чтобы рабочее значение минимального тока стабилитрона равнялось:

минимальное напряжение на входе фильтра.

Максимальная мощность, выделяемая на резисторе:

максимальное напряжение на выходе фильтра.

Принимаем номинальное сопротивление резистора из условия:

условие выполняется.

Выбираем резистор R5-С2-14-2-180 Ом

Расшифруем запись типа резистора:

С2-14 - резистор с металлодиэлектрическим и металлооксидным слоем предпазначен для работы в высокочастотных электрических цепях постоянного, переменного и импульсного тока.

  • 2- номинальная мощность в ваттах;
  • 180 Ом - номинальное сопротивление и буквенное обозначение единицы измерения;
  • 5% - допустимое отклонение сопротивления резистора от номинального в процентах.

Проверяем стабилитрон на максимальный и минимальный токи и максимальную мощность:

Условия выполняются.

Параметрические стабилизаторы напряжения изготавливаются, как правило, с применением транзисторов , стабисторов и стабилитронов .

Данное устройство характеризуется невысоким КПД , вследствие чего используются в качестве модулей слаботочных схем, в которых имеются нагрузки не выше пары десятков миллиампер. Чаще всего они распространены в компенсационных стабилизирующих устройствах в роли опорных источников напряжения.

Параметрические стабилизаторы напряжения подразделяются на мостовые , однокаскадные и многокаскадные .

Принцип работы параметрических стабилизаторов напряжения

Представляем схему простого устройства данного типа, в основе которого находится стабилитрон:

  • I ст - электроток через стабилитрон
  • I н - электроток нагрузки
  • U вых =U ст - стабилизированное напряжение на выходе
  • U вх - нестабилизированное напряжение на входе
  • R 0 - балластный (гасящий, ограничивающий) резистор

Основным свойством стабилитрона , на базе которого функционирует параметрический стабилизатор напряжения, является то, что U на нем в рабочем диапазоне вольт-амперной характеристики (от I ст min до I ст max) остается практически прежним. При этом изменения происходят от U ст min до U ст max , однако при этом принято подразумевать, что U ст min = U ст max = U ст).

Составленная схема параметрического стабилизатора напряжения дает понять, что коррекция тока нагрузки либо входного U не происходит (он сохраняет те же значения, что и на стабилитроне). Но при этом происходят изменения тока , проходящего через стабилитрон, а при изменении напряжения на входе выполняется корректировка тока, двигающегося по балластному резистору. В результате в балластном резисторе происходит гашение излишков напряжения на входе . Значение этого падения зависят от проходящего через него тока, который, в свою очередь, взаимосвязан с электротоком через стабилитрон. В силу этого любая коррекция электротока через стабилитрон напрямую отражается на величине падения U, отмечаемой в балластном резисторе .

Для описания принципа данной схемы используется уравнение:

U вх =U ст +IR 0 , где с учетом I=I ст +I н , получается, что

U вх =U ст +(I н +I ст)R 0 (1)

Для безукоризненного функционирования параметрического стабилизатора напряжения, которое определяется U на нагрузке в пределах от Uст min до Uст max, требуется следить за тем, чтобы через стабилитрон ток всегда оставался в границах от Iст min до Iст max . В частности, минимальные параметры тока через стабилитрон взаимосвязаны с минимальным U на входе и максимальной величиной электротока нагрузки.

Сопротивление балластного резистора устанавливается следующим образом:

R 0 =(U вх min -U ст min)/(I н max +I ст min) (2)

Максимальные параметры тока через стабилитрон взаимосвязаны с максимальным напряжением на входе и минимальной величиной электротока нагрузки Вследствие этого, используя уравнение (1), достаточно просто устанавливается область, в которой параметрический стабилизатор напряжения функционирует нормально.

Расчет области нормального функционирования стабилизирующего устройства:

∆U вх =U вх max –U вх min =U ст max +(I н min +I ст max)R 0 –(U ст min +(I н max +I ст min)R 0)

Выполнив перегруппировку этого выражения, получаем:

∆U вх =(U ст man -U ст min)+(I ст max -I ст min)R 0 –(I н min -I н min)R 0

Или иной метод:

∆U вх =∆U ст +∆I ст R 0 +∆I н R 0

Если взять во внимание незначительные отличия между минимумом и максимумом напряжения стабилизации (U ст min и U ст max), то значение первого слагаемого в правой части уравнения можно привести к нулю, что, в итоге, создает уравнение, описывающее область нормальный функционал прибора, приобретающее следующую форму:

∆U вх =∆I ст R 0 -∆I н R 0 (3)

В случае постоянного тока нагрузки либо с незначительными изменениями, применяемая для установления области нормального функционала устройства формула переходит в разряд элементарных :

∆U вх =∆I ст R 0 (4)

Расчет КПД параметрических стабилизаторов

На следующем этапе установим КПД рассматриваемого параметрического стабилизатора напряжения. Для его определения используется отношение мощности, которая уходит в нагрузку к мощности на входе в устройство:

КПД=U ст I н /U вх I.

С учетом I=I н +I ст получаем:

КПД=(U ст /U вх)/(1+I ст /I н)

Последняя приведенная формула показывает, что увеличение разницы между U на входе и выходе стабилизатора соответствует повышенному значению тока через стабилитрон, что существенно ухудшает КПД .

Пример оценки КПД

Для того, чтобы полноценно оценить «негативные» характеристики КПД, используем приведенные выше формулы, но при этом условно снизим напряжение до 5 Вольт . Для этого используем стандартный стабилитрон, например, КС147А. Согласно характеристикам ток в нем может изменяться в диапазоне от 3-х до 53-х мА .

Согласно условиям, нам требуется получить область нормального функционирования , ширина которой составляет 4 Вольта. Для этого необходимо взять балластный резистор в 80 Ом. С учетом постоянного тока нагрузки используем формулу 4 (иные параметры значительно «ухудшают» положение). На основе этого можно вычислить, применяя формулу 2 , расчет на какие значения тока в данной ситуации следует рассчитывать. В результате имеем 19,5 мА, причем КПД на таких условиях составит, в зависимости от U на входе, 14%-61% .

Для того, чтобы просчитать максимальные значения выходного тока в этих же условиях, необходимо поменять в них значение тока с постоянного на изменяющийся в диапазоне от нуля до I max . Тогда одновременно решая уравнения 2 и 3 , получаем R 0 =110 Ом , I max =13,5 мА . Таким образом, очевидно, что максимум тока стабилитрона в четыре раза превышает максимальное значение тока на выходе .

Недостатком параметрического стабилизатора можно назвать то, что напряжение на выходе отличается внушительной нестабильностью , напрямую завися от тока на выходе, что делает неприемлемым дальнейшую эксплуатацию прибора.

В итоге, с уверенностью можно сказать, что параметрический стабилизатор напряжения обладает лишь одним преимуществом - простым исполнением . Благодаря этому данные устройства продолжают свое существование и даже характеризуются массовым использованием в достаточно сложных схемах, как уже отмечалось, в роли опорного источника напряжения.

Электропитание маломощных устройств РЭС с небольшим пределом изменения тока потребления обычно осуществляется от параметрических стабилизаторов напряжения (ПСН). Кроме того, эти стабилизаторы широко используются в качестве источников опорного напряжения (ИОН) в компенсационных стабилизаторах напряжения и тока.

Параметрический стабилизатор осуществляет стабилизацию выходного напряжения за счет свойств вольтамперных характеристик нелинейного элемента, например стабилитрона, стабис-тора, дросселя насыщения. Структурная схема параметрического стабилизатора приведена на рис. 15.1. В ней нелинейный элемент НЭ подключен к входному питающему напряжению?/ 0 через гасящий резистор /?„ а параллельно НЭ включена нагрузка Я н. При увеличении входного напряжения?/ 0 ток через нелинейный элемент НЭ увеличивается, в результате этого возрастает падение напряжения на гасящем резисторе так, что выходное напряжение на нагрузке остается постоянным. Стабильность выходного напряжения в параметрическом стабилизаторе определяется наклоном вольтамперной характеристики НЭ и является невысокой. В параметрическом стабилизаторе нет возможности плавной регулировки выходного напряжения и точной установки его номинала.

Как отмечалось, для стабилизации постоянного напряжения в ПСН применяются элементы с нелинейной ВАХ. Одним из таких элементов является кремниевый стабилитрон. Основная схема однокаскадного ПСН приведена на рис. 15.2.

Рис. 15.1

Рис. 15.2. Схема однокаскадного параметрического стабилизатора

В этой схеме при изменении входного напряжения и т на ±Д С/ т ток через стабилитрон VI) изменяется на А/ ст, что приводит к незначительным изменениям напряжения на стабилитроне (на ±Д?/„), а следовательно, и на нагрузке. Значение Д{/ н зависит от Д?/ вх, сопротивления ограничивающего резистора Я т и

ди ст

дифференциального сопротивления стабилитрона г ст = --.

д1 ст

На рис. 15.3 приведен пример статической характеристики стабилизатора для пояснения принципа стабилизации и определения коэффициента стабилизации.

Коэффициент стабилизации (по входному напряжению) схемы ПСН нарис. 15.2 и характеристикам на рис. 15.3 представляется как

А и к и т

и, „ « г

Внутреннее сопротивление стабилизатора определяется в основном дифференциальным сопротивлением стабилитрона. На рис. 15.4 приведены зависимости г ст маломощных стабилитронов от напряжения стабилизации для различных токов стабилизации / сх. Из графиков видно, что при увеличении / ст дифференциальное сопротивление уменьшается и достигает

минимального значения для стабилизации 6-8 В.

стабилитронов с напряжением

Рис. 15.4.

Рис. 15.5.

Температурный коэффициент напряжения а н стабилитрона определяет величину отклонения выходного напряжения ПСН при изменении температуры. На рис. 15.5 приведена зависимость а н от напряжения стабилизации. Для приборов с и ст > 5,5 В при повышении температуры напряжение на стабилитроне возрастает. Поэтому температурная компенсация в этом случае может быть достигнута включением последовательно со стабилитроном диодов в прямом направлении (У0 2 , К/) 3 на рис. 15.6, а).

Однако при этом возрастает внутреннее сопротивление ПСН за счет дифференциальных сопротивлений термокомпенсирующих диодов в прямом направлении г диф, которое зависит от выбранного типа диода и режима его работы. В качестве примера на рис. 15.7 приведены зависимости г диф от прямого тока для не-


Рис. 15.6.

а - с термокомпенсирующими диодами К/) 2 , К/) 3 ; б - двухкаскадного стабилизатора; в - мостового стабилизатора с одним стабилитроном; г - мостового стабилизатора с двумя стабилитронами; д - стабилизатора с эмиттерным повторителем; е - с токостабилизирующим двухполюсником; ж - с токостабилизирующими транзисторами различной проводимости п-р-п ир-п-р

которых типов диодов и стабилитронов, включенных в прямом направлении. Необходимо отметить, что термокомпенсированный ПСН имеет повышенное значение г ст и пониженный коэффициент стабилизации. На рис. 15.8 приведены зависимости температурного коэффициента от величины прямого тока для стабилитронов типа Д814 и диода ДЗ10, которые могут быть использованы для температурной компенсации.

Если требуется повышенная стабильность выходного напряжения ПСН, то применяются двухкаскадные или мостовые схемы стабилизаторов, приведенные на рис. 15.6, б , в, г. Предварительная стабилизация напряжения в двухкаскадных ПСН (рис. 15.6, б), осуществляемая с помощью элементов Я г, УЕ) и Г/) 2 , позволяет получить достаточно высокий коэффициент стабилизации выходного напряжения

Я Г Я г2

к = к к ~ -1Л__ г| _

ст2к К ст1 К ст2 у,)(у

^ нх "ст1 " *ст2/"стЗ " "ст4 " "ст5 /

где к ст, к ст2 - коэффициенты стабилизации первого и второго каскадов; г стЬ г ст2 - дифференциальные сопротивления стабилитронов -КТ> 3 ; а*ст4, ^ст5 - дифференциальные сопротивления

диодов Уй 4, Г/) 5 . Температурный уход напряжения на нагрузке и внутреннее сопротивление двухкаскадного ПСН такие же, как в схеме на рис. 15.6, а.

Рис. 15.7.

от прямого тока

Рис. 15.8.

от прямого тока

Повышение коэффициента стабилизации в мостовых схемах (рис. 15.6, в , г) достигается за счет компенсирующего напряжения, возникающего на резисторе R 2 или стабилитроне VD при изменениях входного напряжения. Коэффициент стабилизации при R H = const:

для схемы рис. 15.6, в

и»

U,Ar„/R 3 -R 2 /R,y

где U H - напряжение на нагрузке R„;

для схемы на рис. 15.6, г

где г ст і и г ст 2 - дифференциальные сопротивления стабилитронов уЬ и уо 2 .

В мостовых параметрических стабилизаторах теоретически коэффициент стабилизации может быть бесконечно большим, если выбрать элементы, исходя из условий: для рис. 15.6, в г ст /Я 3 = R 2 /R а для схемы на рис. 15.6, г г ст2 /Я 2 = г ст /Я. Внутреннее сопротивление для схемы на рис. 15.6, в г н = г С1 + Я 2 , а для схемы на рис. 15.6, г

Г н Гст1+ Г -т2-

Следует отметить, что относительно высокая стабильность выходного напряжения в схемах ПСН на рис. 15.6, б-г достигается за счет значительного ухудшения КПД по сравнению со схемой на рис. 15.3. Повысить стабильность выходного напряжения ПСН без ухудшения КПД позволяет схема на рис. 15.6, е за счет применения в ней источника тока, выполненного на транзисторе УТ, стабилитроне У[) (вместо которого могут быть включены два диода, последовательно соединенных в прямом направлении) и резисторах Я э и /? б. Это позволяет стабилизировать ток, протекающий через стабилитрон У1) 2 и тем самым резко уменьшить отклонения напряжения на нагрузке при больших изменениях входного напряжения. Температурный уход и внутреннее сопротивление этой схемы ПСН практически такие же, как в схеме на рис. 15.2.

Максимальная выходная мощность рассмотренных схем ПСН ограничивается предельными значениями тока стабилизации и рассеиваемой мощности стабилитрона. Если использовать транзистор в режиме эмиттерного повторителя со стабилитроном в базовой цепи (рис. 15.6, д ), то мощность нагрузки может быть увеличена. Коэффициент стабилизации ПСН на рис. 15.6, д

  • (15.5)
  • (15.6)

к - * и -

" (1 + цг ст /А 0)?/ и ’

а внутреннее сопротивление

/?(/)« р(г э +/* б /Л 21э);

г б, г э, И 2 э - соответственно сопротивления базы, эмиттера, коллектора и коэффициент передачи тока в схеме ОЭ транзистора.

Однако такой ПСН при 1/ ст > 5,5 В по температурному уходу уступает стабилизаторам, приведенным на рис. 15.6, а-г.

На рис. 15.6, ж приведена схема ПСН с дополнительными транзисторами различной проводимости. Для нее характерным является высокая стабильность выходного напряжения и возможность одновременного подключения двух нагрузок /? Н | и Я н2 к различным шинам входного напряжения. По коэффициенту стабилизации и температурному уходу эта схема незначительно превосходит схему на рис. 15.6, е , а внутренние сопротивления г ст ] и г ст 2 определяются стабилитронами СД и Е/) 2 соответственно.

Само название этого прибора “стабилитрон” созвучно слову стабильность или постоянство чего - либо или в чем - либо. В жизни человека очень важна стабильность, стабильность в зарплате, цены в магазине и прочее. В электронике стабильность напряжения питания очень важный, основной параметр, который при настройке или ремонте электронного оборудования проверяют в первую очередь. Напряжение в электрической сети может меняться в зависимости от общей нагрузки, качества электроснабжающих сетей, и еще многих других факторов, но напряжение питания электронных устройств, при этом, должно оставаться неизменным с определенной заданной величиной.

И так, что же такое стабилитрон.

Википедия, тебе даст такое определение:

"Полупроводнико́вый стабилитро́н, или диод Зенера — это полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки..."

Все правильно, но слишком заумно.

Я попробую сказать проще

Стабилитрон - это такой полупроводниковый прибор, который стабилизирует напряжение.

Считаю, что на первых порах этого определения достаточно, (а как он стабилизирует напряжение, я расскажу ниже)

Принцип работы стабилитрона

Уважаемый читатель на этом рисунке изображен принцип работы стабилитрона.

Представь, что в некую емкость заливают воду, уровень воды в емкости, должен быть строго определенным, для того чтобы емкость не переполнилась в ней сделана переливная труба по которой вода превышающая заданный уровень будет выливаться из емкости.

Теперь от “сантехники” перейдем к электронике.

Обозначение стабилитрона на принципиальной схеме такое - же, как и у диода, отличие “черточка” катода изображается как буква Г.

Обозначение стабилитрона на схеме

Стабилитрон работает только в цепи постоянного тока , и пропускает напряжение в прямом направлении анод - катод так же - как и диод . В отличи от диода у стабилитрона есть одна особенность, если подать ток в обратном направлении катод - анод, ток через стабилитрон течь не будет, но ток в обратном направлении не будет течь только до тех пор, пока напряжение не превысит заданное значение.

Что является заданным значением напряжения для стабилитрона?

Стабилитрон имеет свои параметры - это напряжение стабилизации и ток. Параметр напряжение - указывает при какой величине напряжения стабилитрон будет пропускать ток в обратном направлении, параметром ток - задана сила тока, при которой стабилитрон может работать не повреждаясь.

Стабилитроны изготавливают для стабилизации напряжения различной величины, например, стабилитрон с обозначением V6.8 будет стабилизировать напряжение в пределах 6.8 Вольта.

Таблица рабочих параметров стабилитронов.


В таблице указаны основные параметры - это напряжение стабилизации и ток стабилизации. Есть и другие параметры, но они тебе пока не нужны. Главное понять суть работы стабилитрона и научиться выбирать нужный тебе для твоих схем и для ремонта радиоэлектроники .

Рассмотрим принципиальную схему объясняющую принцип работы стабилитрона.


Возьмем стабилитрон параметром - напряжение стабилизации 12Вольт. Для того чтобы через стабилитрон начал поступать ток в обратном направлении от катода к аноду, входное напряжение должно быть выше напряжения стабилизации стабилитрона (с запасом). Например - если стабилитрон рассчитан на напряжение стабилизации 12Вольт входное напряжение должно быть не меньше 15Вольт. Балластный резистор Rб ограничивает ток который будет проходить через стабилитрон до номинального. Как видишь, при напряжении, превышающем ток стабилизации стабилитрона, оный начинает сбрасывать лишнее напряжение через себя на минус. Иными словами, стабилитрон, выполняет роль переливной трубы, чем больше напор воды или величина электрического тока, тем сильнее открывается стабилитрон и наоборот при уменьшении напряжения, стабилитрон начинает закрываться, уменьшая прохождения тока через себя.

Эти изменения могут происходить как плавно, так и с огромной скоростью в малых интервалах времени, что позволяет добиться высокого коэффициента стабилизации напряжения.

Если напряжение на входе стабилизатора будет меньше 12Вольт, стабилитрон “закроется” и напряжение на выходе стабилизатора будет “плавать” так - же, как и на входе, при этом никакой стабильности напряжения не будет. Вот почему напряжение входное должно быть больше чем необходимое выходное (с запасом). Приведенная схема называется параметрический стабилизатор. Кто хочет полный расклад по расчету параметрического стабилизатора, пусть посетит ГУГЛ, нам начинающим для первого раза вполне достаточно, не будем заморачивать себя формулами.

Теперь перейдем к лабам (лабораторным работам:).


Перед тобой макет параметрического стабилизатора, на входе и выходе макета имеются вольтметры. Сейчас вольтметр на ВХОДЕ стабилизатора показывает 6 вольт на ВЫХОДЕ стабилизатора практически такое же напряжение. Так как я уже говорил, стабилитрон макета имеет напряжение стабилизации 8и2 вольта, напряжение в 6 Вольт на ВХОДЕ стабилизатора, не превышает напряжение стабилизации стабилитрона, поэтому стабилитрон закрыт.


Теперь я повышаю напряжение на входе стабилизатора до 15 Вольт, напряжение на входе стабилизатора превысило напряжение стабилизации стабилитроне и на выходе стабилизатора достигло заданного напряжения стабилизации 8.2 Вольта таким оно и остается, практически неизменным, даже при резких бросках напряжения, стабилитрон отрабатывает мгновенно, поддерживая стабильность напряжения. Повторяюсь еще раз - “Для того чтобы параметрический стабилизатор работал правильно на входе всегда должно быть напряжение, превышающее напряжение стабилизации стабилитрона т. е. с запасом примерно 15-25%”

Так как ток стабилизации такого параметрического стабилизатора слишком мал, параметрический стабилизатор обычно применяют в блоках питания как стабилизирующий элемент схемы, где кроме самого стабилизатора присутствуют элементы регулировки напряжения, мощные транзисторы.

Пример - схема регулируемого стабилизатора (блока питания).


В современной электронике, параметрические стабилизаторы применяют все реже, в основном используя специальные микросхемы, которые представляют из себя довольно мощные стабилизаторы с очень хорошим коэффициентом стабилизации, они компактны и легко применимы.

Но о них мы поговорим в следующий раз. Тем не менее, параметрические стабилизаторы можно встретить во многих различных электронных схемах, поэтому знать их и понимать элементарно принцип работы нужно.

Как проверить стабилитрон

Для проверки стабилитрона, нужно знать как пользоваться мультиметром и воспользоваться методикой проверки полупроводникового диода , если есть возможность можно собрать схему параметрического стабилизатора и проверить стабилитрон в работе, как описано в этой статье. Если у тебя имеется стабилитрон и ты не знаешь его параметры (стерлась надпись на корпусе стаба), собрав схемку параметрического стабилизатора можно определить на какое напряжение стабилизации работает этот неопознанный стаб.