Стройка и ремонт - Информационный портал

Простые формулы расчета потери напряжения в кабеле. Как рассчитать падение напряжения по длине кабеля в электрических сетях. Расчёт потерь в кабеле

Провода и кабели предназначены для передачи электроэнергии потребителям. При этом в протяженном проводнике падает напряжение пропорционально его сопротивлению и величине проходящего тока. В итоге к потребителю напряжение подается несколько меньше, чем оно было у источника (в начале линии). По всей длине провода потенциал будет изменяться из-за потерь в нем.

Потери напряжения в домашнем освещении

Выбор сечения кабеля производится с целью обеспечения его работоспособности при заданном максимальном токе. При этом следует учитывать его длину, от которой зависит еще один важный параметр – падение напряжения.

Линии электропередач выбирают по нормированному значению экономической плотности тока и рассчитывают на падение напряжения. Его отклонение от исходного не должно превышать заданных значений.

Величина проходящего через проводник тока зависит от подключаемой нагрузки. При ее увеличении возрастают также потери на нагрев.

На рисунке выше изображена схема подачи напряжения на освещение, где на каждом ее участке обозначены потери напряжения. Наиболее важной является самая удаленная нагрузка, и потери напряжения большей частью производятся для нее.

Потеря напряжения

Расчет потери напряжения ∆ U на участке цепи длиной L делают по формуле:

∆U = (P∙r 0 +Q∙x 0)∙L/ U ном, где

  • P и Q – мощности, Вт и вар (активная и реактивная);
  • r 0 и x 0 – активное и реактивное сопротивления линии, Ом/м;
  • U ном – номинальное напряжение, В.
  • U ном указывается в характеристиках электроприборов.

Согласно ПУЭ, допустимые отклонения напряжения от нормы следующие:

  • силовые цепи – не выше ±5 %;
  • схемы освещения жилых помещений и снаружи зданий – до ±5 %;
  • освещение предприятий и общественных зданий – от +5 % до -2,5 %.

Общие потери напряжения от трансформаторных подстанций до самой удаленной нагрузки в общественных и жилых зданиях не должны превышать 9%. Из них 5% относится к участку до главного ввода и 4% от ввода до потребителя. В соответствии с ГОСТ 29322-2014 номинал напряжения в трехфазных сетях – 400 В. При этом допускается отклонение от него на ±10% при нормальных условиях эксплуатации.

Нужно обеспечить равномерную нагрузку в трехфазных линиях на 0,4 кВ. Здесь важно, чтобы каждая фаза была нагружена равномерно. Для этого электродвигатели подключаются к линейным проводам, а освещение – между фазами и нейтралью, уравнивая таким образом нагрузки по фазам.

В качестве исходных данных используют значения токов или мощностей. Для протяженных линий учитывается индуктивное сопротивление, когда рассчитывают ∆U в линии.

Сопротивление x 0 проводов принимают в диапазоне от 0,32 до 0,44 Ом/км.

Расчет потерь в проводниках производят по ранее приведенной формуле, где удобно разделить правую часть на активную и реактивную составляющие:

∆U = P∙r 0 ∙L / U ном + Q∙x 0 ∙L/ U ном,

Подключение нагрузки

Нагрузка подключается разными способами. Наиболее распространены следующие:

  • подключение нагрузки в конце линии (рис. а ниже);
  • равномерное распределение нагрузок по длине линии (рис. б);
  • линия L1, к которой подключена другая линия L2 с равномерно распределенными нагрузками (рис. в).

Схема, на которой показаны способы подключения нагрузок от электрощита

Расчет ЛЭП на потерю напряжения

  1. Выбор средней величины реактивного сопротивления для жил из алюминия или сталеалюминия, например, в 0,35 Ом/км.
  2. Расчет нагрузок P, Q.
  3. Расчет реактивной потери:

∆U p = Q∙x 0 ∙L/U ном.

Определение допустимой активной потери из разности между потерей напряжения, которая задана, и вычисленной реактивной:

∆U a = ∆U – ∆U p .

Сечение провода находится из отношения:

s = P∙L∙r 0 /(∆U a ∙U ном).

Выбор ближайшего значения сечения из стандартного ряда и определение по таблице активного и реактивного сопротивлений на 1 км линии.

На рисунке изображен ряд сечений жил кабеля разных размеров.

Кабельные жилы разных сечений

По полученным значениям рассчитывается уточненная величина падения напряжения по формуле, приведенной ранее. Если оно превысит допустимую, следует взять провод больше из того же ряда и произвести новый расчет.

Пример 1. Расчет кабеля при активных нагрузках.

Для расчета кабеля, прежде всего, следует определить суммарную нагрузку всех потребителей. За исходную можно принять P = 3,8 кВт. Сила тока находится по известной формуле:

Если все нагрузки активные, cosφ=1.

Подставив в формулу значения, можно найти ток, который будет равен: I = 3,8∙1000/220 = 17,3 А.

По таблицам находится сечение в кабеле, для медных проводников составляющее 1,5 мм 2 .

Теперь можно найти сопротивление кабеля длиной 20 м: R=2∙r 0 ∙L/s=2∙0,0175 (Ом∙мм 2)∙20 (м)/1,5 (мм 2)=0,464 Ом.

В формуле расчета сопротивления для двухжильного кабеля учитывается длина обеих жил.

Определив величину сопротивления кабеля, можно легко найти потери напряжения: ∆U=I∙R/U∙100 % =17,3 А∙0,464 Ом/220 В∙100 %=3,65 %.

Если на вводе номинальное напряжение составляет 220 В, то допустимые отклонения до нагрузки составляют 5%, а полученный результат не превышает ее. Если бы было превышение допуска, пришлось бы взять больший провод из стандартного ряда, с сечением, составляющим 2,5 мм 2 .

Пример 2. Расчет падения напряжения при подаче питания на электродвигатель.

Электродвигатель потребляет ток при следующих параметрах:

  • I ном = 100 А;
  • cos φ = 0,8 в нормальном режиме;
  • I пусковой = 500 А;
  • cos φ = 0,35 при пуске;
  • падение напряжения на электрощите, распределяющем ток 1000 А, составляет 10 В.

На рис. а ниже изображена схема питания электродвигателя.

Схемы питания электродвигателя (а) и освещения (б)

Чтобы избежать вычислений, применяют достаточно точные для практического применения таблицы с уже рассчитанным ∆U между фаз в кабеле длиной 1 км при величине тока 1 А. В приведенной ниже таблице учитываются величины сечения жил, материалы проводников, тип цепи.

Таблица для определения потерь напряжения в кабеле

Сечение в мм 2 Однофазная цепь Сбалансированная трехфазная цепь
Питание двигателя Освещение Питание двигателя Освещение
Обычный раб. режим Запуск Обычный раб. режим Запуск
Cu Al cos ȹ = 0,8 cos ȹ = 0,35 cos ȹ = 1 cos ȹ = 0,8 cos ȹ = 0,35 cos ȹ = 1
1.5 24 10,6 30 20 9,4 25
2,5 14,4 6,4 18 12 5,7 15
4 9,1 4,1 11,2 8 3,6 9,5
6 10 6,1 2,9 7,5 5,3 2,5 6,2
10 16 3,7 1,7 4,5 3,2 1,5 3,6
16 25 2,36 1,15 2,8 2,05 1 2,4
25 35 1,5 0,75 1,8 1,3 0,65 1,5
35 50 1,15 0,6 1,29 1 0,52 1,1
50 70 0,86 0,47 0,95 0,75 0,41 0,77
70 120 0,64 0,37 0,64 0,56 0,32 0,55
95 150 0,48 0,30 0,47 0,42 0,26 0,4
120 185 0,39 0,26 0,37 0,34 0,23 0,31
150 240 0,33 0,24 0,30 0,29 0,21 0,27
185 300 0,29 0,22 0,24 0,25 0,19 0,2
240 400 0,24 0,2 0,19 0,21 0,17 0,16
300 500 0,21 0,19 0,15 0,18 0,16 0,13

Падение напряжения при нормальной работе электродвигателя составит:

∆U% = 100∆U/U ном.

Для сечения 35 мм 2 ∆U на ток 1 А составит 1 В/км. Тогда при токе 100 А и длине кабеля 0,05 км потери будут равны ∆U = 1 В/А км∙100 А∙ 0,05 км = 5 В. При добавлении к ним падения напряжения на щите 10 В, получатся общие потери ∆U общ = 10 В + 5 В = 15 В. В результате потери в процентах составят:

∆U% = 100∙15/400 = 3,75 %.

Эта величина значительно меньше разрешенных потерь (8 %), и она считается допустимой.

При запуске электродвигателя, его ток увеличивается до 500 А. Это на 400 В больше его номинального тока. На эту же величину возрастет нагрузка на щите распределения. Она составит 1400 А. На нем падение напряжения пропорционально увеличится:

∆U = 10∙1400/1000 = 14 В.

По таблице падение напряжения в кабеле составит: ∆U = 0,52∙500∙0,05 = 13 В. В сумме пусковые потери двигателя составят ∆U общ = 13+14 = 27 В. После следует определить, сколько это будет в процентном отношении: ∆U = 27/400∙100 =6,75%. Результат оказывается в пределах допустимого, поскольку не превышает предельные 8%.

Защиту для электродвигателя следует подбирать таким образом, чтобы напряжения срабатывания было больше, чем при пуске.

Пример 3. Расчет ∆U в цепях освещения.

Три однофазные осветительные цепи подключены параллельно к питающей трехфазной четырехпроводной линии, состоящей из проводников на 70 мм 2 , длиной 50 м, проводящей ток 150 А. Освещение является только частью нагрузки линии (рис. б выше).

Каждая цепь освещения выполнена из медного провода длиной 20 м, сечением 2,5 мм 2 и проводит ток 20 А. Все три нагрузки подключены к одной фазе. При этом линия питания сбалансирована по нагрузкам.

Требуется определить падение напряжения в каждой из цепей освещения.

Падение напряжения в трехфазной линии определяется по действующей нагрузке, заданной в условиях примера: ∆U линии фаз = 0,55∙150∙0, 05 = 4,125 В. Это – потери между фазами. Для решения задачи надо найти потери между фазой и нейтралью: ∆U линии ф-н = 4,125/√3 = 2,4 В.

Падение напряжения для одной однофазной цепи составляет ∆U осв = 18∙20∙0,02=7,2 В. Если сложить потери в питающей линии и цепи, то в сумме они составят ∆U осв общ = 2,4+7,2 = 9,6 В. В процентном отношении это будет 9,6/230∙100 = 4,2 %. Результат является удовлетворительным, поскольку он меньше допустимой величины 6 %.

Проверка напряжения. Видео

Каким образом осуществляется проверка падения напряжения на кабелях разных видов, можно узнать из представленного ниже видео.

При подключении электроприборов важно правильно рассчитать и выбрать подводящие кабели и провода, чтобы потери напряжения в них не превышали допустимые. К ним также добавляются потери в питающей сети, которые следует суммировать.

С помощью данного калькулятора можно вычислить потери напряжения (мощности) и подобрать необходимое поперечное сечения кабеля.

Для этого необходимо знать рабочее напряжение, протекающий ток и длину кабеля. Ниже приведен пример расчета.

Сброс

* Общая длина кабелей плюса и минуса
Удельное сопротивление меди в формулах 0,0175 Ом*мм 2 /м (при 20 С о)

Для примера подберем сечение кабеля от солнечных батарей до контроллера на примере солнечной электростанции для дома, состоящую из следующих компонентов:

  1. Монокристаллическая солнечная батарея Suoyang SY-200WM - 4 шт.;
  2. Контроллер заряда ITracer IT6415ND - 1 шт.;
  3. Инвертор PI 2000Вт/12В (чистый синус) - 1 шт.;
  4. Гелевый аккумулятор 200Ач - 2 шт.

Итак, напряжение в точке максимальной мощности у монокристаллической солнечной батареи составляет 37,2В , а ток в максимальной мощности 5,38А , именно эти значения мы будем использовать в расчетах . Но для начала нам нужно определиться, как соединить между собой солнечные батареи.

В состав нашего комплекта входит контроллер заряда , с функцией поиска максимальной мощности (MPPT). Максимальное входное напряжение от солнечных батарей в данный контроллер составляет 150В , а выходное напряжение на аккумулятор будет составлять 12/24/36 или 48В , автоматически в зависимости от напряжения аккумулятора, который мы подключили. В нашем случае это два 12 вольтовых гелевых аккумулятора , соединенных параллельно.

Имея четыре солнечные батареи SY-200 и выше описанный контроллер мы можем подключить солнечные батареи двумя способами:

1. Параллельное соединение (все четыре штуки параллельно между собой). При этом напряжение у нас останется 37,2В , а максимальный ток от солнечных батарей составит 5,38А * 4 = 21,52А

.

2. Последовательно – параллельное соединение (две последовательных цепочки по две штуки). При этом напряжение будет составлять 37,2В * 2=74,4В , а ток 5,38 * 2 = 10,76А .

Нужно понимать, что мощность в двух случаях будет ОДИНАКОВАЯ . Разность только в токе и напряжении - в первом случае у нас больше ток, но меньше напряжение, а во втором – наоборот. Если мы подключим все четыре солнечные батареи последовательно, то напряжение будет выше, чем допустимое максимальное входное напряжение контроллера заряда, которое составляет 150В , более того нужно учитывать температурный коэффициент и напряжение холостого хода, но сейчас не об этом.

Сечение кабеля подбирается по току, чем больше ток – тем больше сечение !

Подставим в калькулятор расчета потерь напряжения данные первого способа подключения (параллельно все четыре штуки), расстояние от солнечных батарей до контроллера примем равным 15 метров (15 плюс и 15 минус), соответственно общая длина кабеля составит 30 метров , сечение кабеля возьмем равным 6мм²:

  • Напряжение: 37,2В
  • Сечение кабеля: 6мм²
  • Длина: 30м
  • Максимальный ток: 21,52А

Получаем потери напряжения и мощности более 5% (потери напряжения: 1,88В, потери мощности: 40,45Вт ).

Подставим второй способ подключения (Две последовательных цепочки по две штуки):

  • Напряжение: 74,4В
  • Сечение кабеля: 6мм²
  • Длина: 30м
  • Максимальный ток: 10,76А

Получаем куда лучший результат, благодаря увеличенному напряжению и меньшему току: потери напряжения и мощности 1,26% (потери напряжения: 0,94В, потери мощности: 10,11Вт )

Выводы : Как видно, благодаря возможности увеличения напряжения, путем последовательно – параллельного соединения солнечных батарей, нам удалось уменьшить ток и при использовании кабеля одного и того же сечения уменьшить потери в нем в 4 раза!

Содержание:

Любой кабель ограничен в своей пропускной способности. По этой причине могут появиться такие условия в электросети, когда для нормальной работы оборудования величина напряжения окажется недостаточной. Такое явление часто встречается, и по этой причине заслуживает более детального рассмотрения, что и будет сделано далее в нашей статье.

Основные причины падения напряжения

Итак, на пропускную способность кабеля оказывают влияние два его главных параметра:

  • площадь поперечного сечения;
  • длина.

Но сила тока в жилах – это как раз та физическая величина, с которой перечисленные параметры находятся в неразрывной связи по закону Ома для участка электрической цепи:

Среди указанных составляющих формулы сопротивления не хватает еще одной, связывающей силу тока и его неравномерное распределение по поперечнику жилы кабеля. Напоминаем, что это явление именуется поверхностным эффектом или скин-эффектом. Чем больше сила тока, тем заметнее скин-эффект. От него можно избавиться в кабеле, только делая жилы многопроволочными.

Но рассмотренные явления в полной мере соответствуют кабелям с постоянным током, используемым в основном для электрического транспорта. В остальном – это лишь часть того, что входит в понятие падения напряжения (ΔU) по длине кабеля, работающего в промышленной электросети, в которой действует переменное напряжение. В этих условиях любой проводник характеризуется импедансом, учитывающим его индуктивность и емкость, образующих реактивную составляющую напряжения и тока. Поэтому в целом получается комплексная проблема, которая, по сути, сводится к потерям электроэнергии. А ΔU – это их объективное проявление (см. поясняющее изображение далее):

Напоминаем, что в электротехнике для расчетов напряжений и токов с участием нагрузки, исчисляемой по импедансу, используются комплексные числа. Индуктивность и емкость вызывают сдвиг между током и напряжением. Поэтому комплексное число может быть представлено графически. Один вектор – это активная составляющая, другой – реактивная. Сдвиг между током и напряжением характеризуется углом между упомянутыми двумя векторами, выходящими из общей точки. На изображении выше изложенное представляют векторные диаграммы, выполненные красным цветом.

Варианты определения ΔU

Метод векторов

В ходе проектирования электрической сети в основе лежит нагрузка, работоспособность которой необходимо обеспечить. Если кабель будет выбран неправильно, ΔU на нем не позволит правильно работать этой нагрузке. Асинхронные двигатели не достигнут заданных оборотов, трансформаторы на вторичных обмотках не обеспечат номинальные напряжения и т.д., и т.п. Для однофазной сети нагрузка разделяется на активную и реактивную составляющие.

Трехфазная сеть представляется как три самостоятельные однофазные сети. Они называются схемами замещения. Этот метод обеспечивает достаточно точные результаты, если нагрузка симметрична. Если симметрия нарушается, то анализ причин, которые этот процесс вызвали, также можно выполнить, используя этот метод. На основании известных величин можно построить векторную диаграмму и, меняя длину векторов соответственно поставленной задаче, определять те величины, которые необходимы.

Например, известны параметры, которые необходимы для нормальной работы нагрузки. Параметры линии также известны. Следовательно, задача сводится к определению векторного напряжения U1. Шаги, приводящие к появлению искомого вектора, показаны далее.

Длина вектора и его направление определяются исходя из закона Ома и направления вектора напряжения, определяющего ток (векторы тока и напряжения по направлению совпадают). Вектор напряжения, который получается как результат сложения активной и реактивной составляющих нагрузки (IR+IХ), – это и есть ΔU в линии, соединяющей источник напряжения U1 с нагрузкой. Из полученных векторов просто получить также и потери напряжения. Для этого векторы U1 и U2 совмещаются так, чтобы направление обоих было таким же, как у вектора U2. Разница между ними в длине – это будут потери напряжения.

Таблицы Кнорринга

Но заниматься построением векторов довольно-таки нудно. Тем более что за время существования потребности в проектировании электросетей для стандартных ситуаций придуманы решения более быстрые. К ним относятся таблицы Кнорринга. Стандартность ситуации для них состоит в постоянстве напряжения на входе кабеля или иного проводника (переменное напряжение с действующим значением 220 В). Это важно как для одной фазы, так и для трех фаз. То есть в трехфазной электросети нагрузка должна быть симметричной.

Также необходимо располагать величиной сечения токопроводящей жилы (в квадратных миллиметрах), длиной проводника (в метрах) и мощностью в нагрузке (в киловаттах). Получаем произведение мощности на длину, в столбце, начинающемся с подходящего сечения жилы, находим это значение, и в крайнем левом столбце смотрим ΔU на кабеле. Только и всего. Два варианта таблиц для напряжения однофазной и трехфазной электрической сети, а также одна для напряжения 12 В, показанные далее, читатель может использовать для расчетов.

Для того чтобы обеспечить подачу напряжения от распределительного устройства к конечному потребителю используются линии электропередач. Они могут быть воздушными или кабельными и имеют значительную протяженность.

Как и все проводники, они имеют сопротивление, которое зависит от длины и чем они протяжение, тем больше потеря напряжения.

И чем длиннее линия, тем потери напряжения будут больше. Т.е. напряжение на входе и в конце линии будет разное.

Чтобы оборудование работало без сбоев, эти потери нормируются. Они суммарно должны иметь значение, не превышающее 9%.

Максимальное понижение напряжение на вводе составляет пять процентов, а до самого удаленного потребителя не более четырех процентов. В трехфазной сети при трех или четырех проводной сети этот показатель не должен превышать 10%.

Если эти показатели не соблюдаются, конечные потребители не смогут обеспечить номинальные параметры. При снижении напряжения возникают следующие симптомы:

  • Осветительные приборы, в которых используются лампы накаливания, начинают работать (светиться) в половину накала;
  • При включении электродвигателей уменьшается пусковое усилие на валу. В результате чего двигатель не вращается, и как следствие происходит перегрев обмоток и выход из строя;
  • Некоторые электроприборы не включаются. Не хватает напряжения, а другие приборы после включения могу выходить из строя;
  • Установки, чувствительные к входному напряжению, работают нестабильно, так же могут не включаться источники света, у которых нет нити накаливания.

Передача электроэнергии производится по воздушным или кабельным сетям. Воздушные изготовлены из алюминия, а кабельные могут быть алюминиевыми или медными.

В кабелях кроме активного сопротивления имеется емкостное сопротивление. Поэтому потеря мощности зависит от длины кабеля.

Причины, приводящие к снижению напряжения

Потери напряжения в линии электропередач возникают по следующим причинам:

  • По проводу проходит ток, который нагревает его, в результате увеличивается активное и емкостное сопротивление;
  • Трехфазный кабель при симметричной нагрузке имеет одинаковые значения напряжения на жилах, а ток нулевого провода будет стремиться к нулю. Это справедливо если нагрузка постоянная и чисто активная, что в реальных условиях невозможно;
  • В сетях, кроме активной нагрузки, имеется реактивная нагрузка в виде обмоток трансформатора, реакторов и т.п. и как следствие в них появляется индуктивная мощность;
  • В результате сопротивление будет складываться из активного, емкостного и индуктивного. Оно влияет на потери напряжения в сети.

Потери тока зависят от длины кабеля. Чем он протяжение, тем больше сопротивление, а это значит, что и потери значительнее. Отсюда следует, что потери мощности в кабеле зависят от протяженности или длины линии.

Расчет значения потерь

Для обеспечения работоспособности оборудования необходимо произвести расчет. Он проводится в момент проектирования. Современный уровень развития вычислительной техники позволяет производить вычисления с помощью онлайн калькулятора, который позволяет быстро произвести расчет потерь мощности кабеля.

Для вычисления достаточно ввести необходимые данные. Задают параметры тока – постоянный или переменный. Материал линии электропередач – алюминий или медь. Указывают, по каким параметрам производится расчет потери мощности – по сечению или диаметру провода, току нагрузки или сопротивлению.

Дополнительно указывают напряжение сети и температуру кабеля (зависит от условий эксплуатации и способе прокладки). Эти значения подставляются в таблицу расчета и производят расчет с помощью электронного калькулятора.

Можно произвести расчет на основании математических формул. Чтобы правильно понять и оценить процессы, происходящие при передаче электрической энергии, применяют векторную форму представления характеристик.

А для минимизации расчетов трехфазную сеть представляют как три однофазные сети. Сопротивление сети представлено как последовательное подключение активного и реактивного сопротивления к сопротивлению нагрузки.

При этом формула расчета потери мощности в кабеле существенно упрощается. Для получения необходимых параметров используют формулу.

Эта формула показывает потерю мощности кабеля в зависимости от тока и сопротивления, распределенного по длине кабеля.

Однако, эта формула справедлива, если знать силу тока и сопротивление. Сопротивление можно вычислить по формуле. Для меди оно будет равно р=0,0175Ом*мм2/м, а для алюминия р=0,028Ом*мм2/м.

Зная значение удельного сопротивления вычисляют сопротивление, которое будет определяться по формуле

R=р*I/S, где р- удельное сопротивление, I-длина линии, S- площадь сечения провода.

Для того чтобы выполнить расчет потерь напряжения по длине кабеля, необходимо полученные значения подставить в формулу и произвести вычисления. Эти расчеты можно производить при монтаже электрических сетей или охранных систем и видеонаблюдения.

Если вычисления потери мощности не производить, то это может привести к снижению питающего напряжения потребителей. В результате произойдет перегрев кабеля, он может сильно нагревается, и как следствие происходит повреждение изоляции.

Что может привести к поражению людей электрическим током или короткому замыканию. Снижение напряжения в линии может привести к выходу их строя электронного оборудования.

Поэтому важно при проектировании электропроводки производить расчет потери напряжения в подводящих проводах и проложенном кабеле.

Методы сокращения потерь

Потери мощности можно сократить следующими методами:

  • Увеличить сечение проводников. В результате снизится сопротивление, и потери уменьшатся;
  • Снижение потребляемой мощности. Этот параметр не всегда можно изменить;
  • Изменение протяженности кабеля.

Уменьшение мощности и изменение длины линии осуществить практически не возможно. Поэтому если увеличивать сечение провода без расчета, то на длинной линии это приведет к неоправданным затратам.

А это значит, что очень важно произвести расчет, который позволит правильно рассчитать потери мощности в кабеле и выбрать оптимальное значение сечения жил.

В процессе проектирования электрической проводки, необходимо провести точные расчеты потери напряжения в кабеле. Это позволяет предотвратить сильное нагревание поверхности проводов в процессе эксплуатации. Благодаря этим мерам удаётся избежать появления короткого замыкания и преждевременной поломки бытовых приборов.

Помимо этого, формула позволяет правильно подобрать диаметр сечения провода, который подойдет для разного вида электромонтажных работ. Неправильный выбор, может стать причиной поломки всей системы. Облегчить поставленную задачу помогает онлайн – расчет.

Как рассчитать потерю напряжения?

Калькулятор в режиме онлайн позволяет правильно вычислить необходимые параметры, которые в дальнейшем сократят появление различного рода неприятностей. Для самостоятельного вычисления потери электрического напряжения используют следующую формулу:

U =(P*ro+Q*xo)*L/U ном:

  • Р – это активная мощность. Её измеряют в Вт;
  • Q – реактивная мощность. Единица измерения вар;
  • ro – выступает в качестве активного сопротивления (Ом);
  • хо – реактивное сопротивление (м);
  • U ном – это номинальное напряжение (В). Оно указывается в техническом паспорте устройства.

Согласно правилам устройства электроустановок (ПУЭ) допустимой нормой возможных отклонений напряжения принято считать:

  • в силовых цепях оно может составлять не выше +/- 6%;
  • в жилом пространстве и за его пределами до +/- 5%;
  • на производственных предприятиях от +/- 5% до -2%.

Потери электрического напряжения от трансформаторной установки до жилого помещения не должны превышать +/- 10%.

В процессе проектирования, рекомендуется сделать равномерную нагрузку на трехфазной линии. Допустимая норма составляет 0,5 кВ. В ходе монтажных работ электродвигатели необходимо подключить к линейным проводникам. Линия освещения будет заключена между фазой и нейтралью. В результате этого, нагрузка правильно распределяется между проводниками.

Когда рассчитывают потерю напряжения в кабеле, за основу берут данные значения тока или мощности. На протяженной электрической линии учитывают индуктивное сопротивление.

Как снизить потери?

Одним из способов снижения потери напряжения в проводнике, является увеличение его сечения. Помимо этого, рекомендуется сократить его протяженность и удаленность от точки назначения. В некоторых случаях эти способы не всегда можно применить по техническим причинам.В большинстве случаем, сокращение сопротивления позволяет нормализовать работу линии.

Главным недостатком большой площади сечения кабеля, являются существенные материальные затраты в процессе использования. Именно поэтому правильный расчёт и подбор нужного диаметра, позволяют избавиться от этой неприятности. Калькулятор в режиме онлайн применяют для проектов с высоковольтными линиями. Здесь программа помогает правильно рассчитать точные параметры для электрической цепи.

Основные причины появления потери напряжения

Большие потери электрического напряжения возникают в из – за чрезмерного рассеивания энергии. В результате этого, поверхность кабеля сильно нагревается, тем самым провоцируя деформирование изоляционного слоя. Такое явление распространено на высоковольтных линиях, где отмечают большие нагрузки.