Стройка и ремонт - Информационный портал

Схема управления реле. Устройство и примеры применения реле, как выбрать и правильно подключить реле Как подключить реле к транзистору

Что нужно для того, чтобы стать профессиональным разработчиком программ для микроконтроллеров и выйти на такой уровень мастерства, который позволит с лёгкостью найти и устроиться на работу с высокой зарплатой (средняя зарплата программиста микроконтроллеров по России на начало 2017 года составляет 80 000 рублей). ...

Как вы понимаете, мощную и/или высоковольтную нагрузку (такую как лампы накаливания, электродвигатели, электронагревательные элементы и т.п.) нельзя напрямую подключить к . Потому что выходы микроконтроллера:

  1. Не рассчитаны на работу с высоким напряжением.
  2. Не рассчитаны на управление мощной нагрузкой (нагрузкой, которая потребляет большой ток).
  3. Не имеют гальванической развязки (иногда это важно даже при управлении слаботочной нагрузкой).

Из этого следует, что для управления с помощью микроконтроллера мощной нагрузкой необходимо применять какие-то хитрые способы сопряжения выходов микроконтроллера с нагрузкой. Этих способов несколько:

  1. Подключение нагрузки через твёрдотельное реле.

Более подробно эти виды подключения будут рассмотрены в соответствующих статьях. А здесь я буду говорить только о достоинствах и недостатках этих способов.

Подключение нагрузки через оптрон

Итак, один из наиболее простых способов - это подключение через оптрон (фотосемистор, фототиристор и т.п.).

Этот способ подходит для управления активной нагрузкой, такой как лампы накаливания, электронагреватели и т.п. Его преимуществами являются наличие гальванической развязки, относительная простота подключения и дешевизна оптронов. Серьёзный недостаток, пожалуй, один. Но довольно существенный - при управлении индуктивной нагрузкой, такой как электродвигатели, симистор/тиристор оптрона может самопроизвольно открыться (без команды от микроконтроллера). Так что для такого случая придётся принимать дополнительные меры, усложняющие устройство на микроконтроллере .

Подключение нагрузки через транзистор

Тоже выполняется довольно просто. Стоимость обычных транзисторов тоже относительно невелика. Это плюс.

Минусы - можно управлять только нагрузкой постоянного тока (речь идёт о дешёвых биполярных транзисторах). Причём напряжение нагрузки тоже по возможности должно быть небольшим. Потому что высоковольтные транзисторы стоят уже не очень дёшево (а некоторые и очень дорого).

Ещё один недостаток - отсутствие гальванической развязки между нагрузкой и .

И, также как в случае с оптроном - надо хотя бы немного разбираться в электронике, чтобы подобрать правильный транзистор и рассчитать схему включения самого транзистора и дополнительных резисторов.

Подключение нагрузки через электромагнитное реле

Подключить электромагнитное реле проще простого. Но это только на первый взгляд. На самом деле тоже есть особенности, которые надо знать (расскажу о них в соответствующей статье). Иначе можно просто вывести из строя выход микроконтроллера.

Преимущества электромагнитного реле:

  1. Низкая цена.
  2. Можно управлять нагрузкой практически любой мощности и напряжения.
  3. Можно управлять нагрузкой как постоянного, так и переменного тока.
  4. Можно управлять как активной, так и индуктивной нагрузкой без каких-либо дополнительных ухищрений.
  5. Есть гальваническая развязка между выходом микроконтроллера и нагрузкой.
  6. Не требуется особых познаний в электронике, чтобы подобрать реле под нагрузку.

Недостатки:

  1. Необходимо принимать дополнительные меры для защиты выхода микроконтроллера.
  2. Относительно низкое быстродействие (реле переключается существенно медленнее, чем полупроводниковые приборы - иногда это важно).
  3. Большие габариты и вес. Хотя современные реле довольно миниатюрны, их размеры и вес всё-равно больше, чем размеры полупроводниковых приборов.
  4. Относительно низкий ресурс. Так как в реле имеются контакты, то ресурс реле ниже, чем у полупроводников. Из-за искрения контакты быстрее выходят из строя. Хотя, как показывает практика, качественные реле могут работать десятки лет без поломок.

Подключение нагрузки через твёрдотельное реле

Твёрдотельное реле - это полупроводниковый прибор, который объединяет в себе, например, фотосимистор и всю необходимую для его управления обвязку. То есть твёрдотельное реле можно просто подключить к выходу микроконтроллера, не заботясь о том, какое сопротивление должны иметь гасящие резисторы и т.п.

Однако использовать твёрдотельные реле сложнее, чем обычные реле. Потому как у твёрдотельных реле довольно много разных характеристик, в которых надо разбираться. Впрочем, изучить эту тему несложно.

Недостаток у твёрдотельного реле, пожалуй, один - это высокая цена. Твёрдотельное реле, как правило, стоит в 5...10 раз дороже обычного электромагнитного реле (то есть это сотни и тысячи рублей за штуку).

Выводы

Какой прибор в каких случаях использовать - определяется из задачи и условий эксплуатации устройства, которое вы проектируете. Здесь всё довольно непросто - придётся вам разбираться самим (я пока не готов всё это описывать))).

Если вы немного запутались и не можете выбрать, что же использовать в вашем устройстве, то совет могу дать такой:

  1. Для активной нагрузки постоянного тока низкого напряжения (до 50 В) используйте транзисторы.
  2. Для любых нагрузок переменного тока и для мощных высоковольтных нагрузок постоянного тока используйте электромагнитные реле.
  3. Ну а вообще думайте, что и как использовать, в зависимости от технических требований к устройству.

Если вы только начинаете разрабатывать устройства, то это вполне пригодный совет. Ну а когда наберётесь опыта, то уже сами сможете определять, какие и когда приборы использовать.


В этой статье рассматриваются важные драйверы и правильные схемы, необходимые для безопасного подключения внешних устройств к вводу/выводу MCU (микроконтроллер, англ. - Microcontroller Unit, MCU).

Введение

Как только у вас возникнет идея для проекта, очень заманчиво перейти прямо к подключению Arduino к схемам и устройствам, таким как светодиоды, реле и динамики. Однако делать это без правильной схемы может оказаться фатальным для вашего микроконтроллера.

Многие устройства ввода/вывода потребляют много тока (> 100 мА), которые большинство микроконтроллеров не могут обеспечить в безопасном режиме, а когда они пытаются обеспечить такое количество тока, они часто ломаются. Здесь нам на помощь приходят специальные схемы, которые называются «драйверы» (англ. - drivers). Драйверы - это схемы, которые могут принимать небольшой слабый сигнал от микроконтроллера, а затем использовать этот сигнал для управления каким-либо энергопотребляющим устройством.

Для правильной работы микроконтроллеров с внешними устройствами иногда требуются специальные схемы. Эти внешние устройства включают:

  • Цепи драйвера
  • Схемы защиты входа
  • Схемы защиты выхода
  • Цепи изоляции

Итак, давайте посмотрим на некоторые из этих схем и на то как они работают!

Простой светодиодный (LED) драйвер

Эта простая схема удобна для управления светодиодами с высоким энергопотреблением с помощью микроконтроллеров, где выход микроконтроллера подключен к «IN».

Когда микроконтроллер выводит 0, транзистор Q1 отключается, а также светодиод D1. Когда микроконтроллер выводит 1, транзистор включается, и поэтому D1 также включается. Значение R1 зависит от выходного напряжения вашего микроконтроллера, но значения между 1KΩ ~ 10KΩ часто работают хорошо. Значение R2 зависит от размера нагрузки, которую вы питаете, и эта схема подходит для питания устройств до 1А и не более.

Простой релейный драйвер

Устройствам, которые потребляют более 1 А тока и будут включаться и выключаться раз в несколько секунд, лучше подойдут реле.

Хотя реле достаточно просты (небольшой электромагнит, который привлекает металлический рычаг для замыкания схемы), они не могут управляться непосредственно микроконтроллером.

Для обычных реле требуются токи около 60 мА ~ 100 мА, что слишком много для большинства микроконтроллеров, поэтому реле требуют схему с использованием управления транзистором (как показано выше). Однако вместо резистора, который необходимо использовать для ограничения тока, требуется обратный диод защиты (D1).

Когда микроконтроллер (подключенный к «IN»), выдает 1, тогда включается транзистор Q1. Это включает реле RL1, и в результате загорается лампа (R2). Если микроконтроллер выводит 0, то транзистор Q1 отключается, что отключает реле, и поэтому лампа выключается.

Реле очень часто встречаются в схемах, требующих переключения цепей электропитания переменного тока, и доступны для переключения 230В и 13А (подходит для тостеров, чайников, компьютеров и пылесосов).


Кнопки

При подключении кнопки к микроконтроллеру могут иногда возникнуть простые проблемы. Первая (и самая раздражающая проблема) возникает в виде отскока, когда кнопка посылает много сигналов при нажатии и отпускании.

Кнопки обычно представляют собой кусок металла, который при контакте соприкасается с каким-то другим металлом, но когда кнопки вступают в контакт, они часто отскакивают (хотя они чаще всего крошечные). Этот отскок означает, что кнопка соединяется и отключается несколько раз, прежде чем зафиксироваться, а в итоге - результат, который ненадолго выглядит случайным. Поскольку микроконтроллеры очень быстрые, они могут поймать этот отскок и выполнять события нажатия кнопки несколько раз. Чтобы избавиться от отскока, можно использовать схему ниже. Схема, показанная здесь, представляет собой очень тривиальную схему, которая хорошо работает и проста в построении.

Защита входа: напряжение

Не все устройства ввода будут дружественными к вашему микроконтроллеру, а некоторые источники могут даже нанести ущерб. Если у вас есть источники входного сигнала, которые поступают из окружающей среды (например, датчик напряжения, датчик дождя, человеческий контакт) или источники входного сигнала, которые могут вывести напряжения, превышающие то, что может обрабатывать микроконтроллер (например, цепи индуктора), тогда вам потребуется включать некоторую защиту ввода напряжения. Схема, показанная ниже, использует 5V стабилитронов для ограничения входных напряжений, так что входное напряжение не может превышать 5 В и ниже 0 В. Резистор 100R используется для предотвращения слишком большого тока, когда диод Зенера захватывает входное напряжение.


Защита ввода/вывода: ток

Входы и выходы микроконтроллеров иногда могут быть защищены от слишком большого тока. Если устройство, такое как светодиод, потребляет меньше тока, чем максимальный выходной ток от микроконтроллера, тогда светодиод может быть напрямую подключен к микроконтроллеру. Тем не менее, последовательный резистор будет по-прежнему необходим, как показано ниже, а общие значения последовательных резисторов для светодиодов включают в себя 470 Ом, 1 кОм и даже 2,2 кОм. Серии резисторов также полезны для входных контактов в редких случаях, когда неисправны контакты микроконтроллеров или входное устройство испытывает всплеск выходного тока.


Преобразователи уровня

В прошлом большинство сигналов в цепи работало бы на одном и том же напряжении, и это напряжение обычно составляло 5 В. Однако с увеличением технологических возможностей современной электроники снижается напряжение на новых устройствах. Из-за этого многие схемы включают смешанные сигналы, в которых более старые части могут работать при напряжении 5 В, в то время как более новые части работают при напряжении 3,3 В.

Хотя многие радиолюбители предпочли бы использовать один уровень напряжения, правда состоит в том, что более старые 5-вольтовые части могут не работать на 3,3 В, в то время как более новые устройства 3,3 В не могут работать при более высоком напряжении 5 В. Если устройство 5V и устройство 3.3V хотят общаться, то требуется сдвиг уровня, который преобразует один сигнал напряжения в другой. Некоторые устройства с напряжением 3,3 В имеют 5 В "толерантность", что означает, что сигнал 5 В может напрямую подключаться к сигналу 3,3 В, но большинство устройств 5 В не могут переносить 3.3 В. Чтобы охватить оба варианта, приведенные ниже схемы показывают преобразование от 5 до 3,3 В и наоборот.


Изоляция: Оптоизолятор

Иногда схема, с которой должен взаимодействовать микроконтроллер, может представлять слишком много проблем, таких как электростатический разряд (ESD), широкие колебания напряжения и непредсказуемость. В таких ситуациях мы можем использовать устройство, называемое оптоизолятором, которое позволяет двум цепям общаться, не будучи физически соединенными друг с другом с помощью проводов.

Оптоизоляторы взаимодействуют с использованием света, когда одна цепь излучает свет, который затем обнаруживается другой схемой. Это означает, что оптоизоляторы не используются для аналоговой связи (например, уровни напряжения), но вместо этого для цифровой связи, где выход включен или выключен. Оптоизоляторы могут использоваться как для входов, так и для выходов на микроконтроллеры, где входы или выходы могут быть потенциально опасны для микроконтроллера. Интересно, что оптоизоляторы также могут использоваться для смещения уровня!


Для индикации уровня сигнала или постоянного напряжения, тока частоиспользуют поликомпараторные микросхемы вроде AN6884, КА2284, ВА6124 или многие другие аналогичные. Такая микросхема представляет собой набор компараторов, с выходами на светодиоды, а так же измерительную схему и схему предварительного усиления, детектора.

На рисунке 1 показана типовая схема включения микросхем AN6884, КА2284, ВА6124. Деталей минимум, и получаем пятипороговый индикатор уровня. Светодиоды работают по принципу «градусника», то есть, если их расположить последовательно в линию и признать это все как непрерывную линию, то чем больше сигнал, тем длиннее линия (тем больше светодиодов горит).

Но, бывают случае, когда необходимо не только визуально определить уровень сигнала, но и предпринять какие-то меры, если уровень сигнала достиг некоторого уровня. Например, при зажигании светодиода HL5 нужно чтобы включилось электромагнитное реле и своими контактами включило некую нагрузку или устройство.

Схема подключения реле

На рисунке 2 показано как можно подключить обмотку реле. Но сначала обратите внимание на рисунок 1 - все светодиоды подключены к выходам микросхемы непосредственно, без каких-либо токоограничительных резисторов. Хотя, в литературе встречаются схемы и с токоограничительными резисторами.

На самом деле в токоограничительных резисторах, касательно микросхем AN6884, КА2284, ВА6124 и их аналогов, нет никакой необходимости, потому что внутри микросхемы, на каждом выходе есть схема ограничения тока. Поэтому, напряжение между выходом и положительной шиной питания не бывает больше прямого напряжения падения на светодиоде.

Рис. 1. Типовая схема включения микросхем AN6884, КА2284, ВА6124.

Рис. 2. Схема подключения реле к каналу индикатора сигнала.

Но такого небольшого напряжения недостаточно ни для обмотки реле, а зачастую и даже для открывания транзисторного ключа. Однако, повысить напряжение между выходом и шиной питания можно просто включением дополнительного токоограничительного резистора (R2 на рисунке 2). Благодаря ему напряжение на промежутке от выхода микросхемы до шины питания увеличивается. Изменяя сопротивление этого резистора можно выставить необходимое напряжение.

На рисунке 2 показана схема управления обмоткой реле - его включением, при включении светодиода HL5. При включении HL5 напряжение на выводе 1 относительно общего минуса падает, но относительно шины питания увеличивается. Достигает уровня, достаточного для открывания транзистора VT1. Он открывается, и вслед за ним открывается более мощный транзистор VT2. А в его коллекторной цепи включена обмотка реле К1.

Напряжение питания реле может отличаться от напряжения питания микросхемы. Точно таким же образом, можно соединить реле и с любым другим выходом микросхемы типа AN6884, КА2284, ВА6124, и даже сделать пять реле по числу выходов.

Затем это надо? Причин может быть множество. Например, при превышении уровня громкости нужно отключить источник звука, либо включить сигнализацию.

Или нужно реагировать на превышение тока в нагрузке. Или можно сделать переключатель, состоящий из переменного резистора и этой схемы. При вращении ручки переменного резистора будет меняться напряжение на входе микросхемы, а на её выходах будут включаться реле.

Снятие сигнала с индикатора

Если нужно управлять не реле, а каким-то цифровым устройством, например, при превышении некоего уровня сигнала подавать логическую единицу на вход микроконтроллера или сигнализатора, можно собрать схему, показанную на рисунке 3. Здесь также для примера взят вариант со светодиодом HL5, хотя, конечно, можно и с любого другого выхода микросхемы.

Рис.3. Схема получения логического сигнала с сегмента индикатора.

При зажигании HL5 напряжение на базе VT1 относительного его же эмиттера увеличивается, транзистор открывается и на его коллекторе напряжение увеличивается до уровня логической единицы, соответственно напряжению питания микросхемы.

Рис. 4. Подключение с опто-развязкой.

Ну и последний вариант, - использовать оптопару. Можно любую оптопару, как с мощным симистором для управления каким-то нагревателем (так называемое, «твердотельное реле»), так и маломощную транзисторную, для передачи команды на другую схему.

В любом случае, два варианта, либо светодиод оптопары включить последовательно индикаторному светодиоду, как показано на рисунке 4, либо вместо него, как на рисунке не показано, но можно догадаться, но только если в индикации нет никакой необходимости.

Каравкин В. РК-2016-04.

Многие устройства автоматики оснащаются реле, а вот как ими можно осуществлять управление разберемся на примере нескольких простых схем в том числе и одной на микроконтроллере

Вариант 1: Это простой одноканальный релейный драйвер, используемый для разнообразных радиолюбительских проектов и не только. Конструкцию можно использовать для переключения мощных потребителей, при этом она сама управляется слабым напряжением и током.


Вариант 2:


Работа: при подаче напряжения питания емкость С1 заряжается через сопротивление R1 и замкнутые контакты К1.1 практически до уровня напряжения питания. При нажатии на S1 через её замкнутые контакты, через K1.1 и R1 напряжение поступает на катушку К1, и последнее срабатывает. Реле К1.1 замыкает свои фронтовые контакты и питание на обмотку идет через резистор R1. На время переключения контактов, питание катушки происходит от емкости С1.

После замыкания фронтовых контактов, конденсатор С1 разряжается через сопротивление R2. При очередном нажатии на S1, происходит заряд С1 из-за чего напряжение на катушке падает и происходит размыкание фронтовых и замыкание тыловых контактов. Пассивные компоненты R1 и C1 составляют цепь с постоянной времени в 150 миллисекунд.

Вариант 3:


Схема управления достаточно проста и построена на самом реле и одном биполярном транзисторе. При первом нажатии на кнопку VT1 отпирается разрядным током конденсатора С1, устройство срабатывает. Конденсатор отсоединяется от источника питания и, если отпустить кнопку начинает быстро разряжаться через диод и сопротивление. Если теперь нажать на кнопку второй раз, то транзистор закрывается и отключает реле. Так происходит управление устройствами автоматики в этом варианте.

Если появляется необходимость организовать с помощью микроконтроллера управление электромагнитным устройством можно собрать следующую радиолюбительскую разработку интерфейса микроконтроллер - реле с гальванической развязкой.


Основа проекта микросхема CNY17-1, которая представляет собой типовую оптопару, состоящую из инфракрасного светодиода и фототранзистора. Устройство способно передавать информацию в виде сигналов при сохранении изоляции между входом и выходом. Взаимодействие микроконтроллера, и реализация управления с такой схемой построено довольно просто. Вход может быть подключен к выбранной ножке МК через входную клемму. Однако, нужно обязательно учитывать полярность. Состояние уровня логической 1 (уровень 5 В) на входе оптопары замкнет реле, а логический ноль соответственно - разомкнет. Цепь может получать питание практически от любого блока питания постоянного тока на 12 В. В данном варианте управляющего устройства резистор R1 = 1 КОм, Реле на 12 В / с сопротивлением обмотки 320 Ом потребляет около 38 мА.

Диод D1 (1N4007, 1N4001), подсоединенный параллельно катушке, защищает биполярный транзистор электромагнитного импульса, генерируемого индуктивностью катушки в момент запирания транзистора. C1 емкостьб 100 мкФ это шунтирующий конденсатор, он предназначен для гашения токовых пульсаций, когда реле включается и откключается.

Подборка несложных схем, управляющих мощной нагрузкой на определенный временной интервал, а затем ее автоматически отключающие.