Стройка и ремонт - Информационный портал

Углеродистые стали их свойства. Стали углеродистые. Марки, свойства и их применение. Стали углеродистые качественные конструкционные

Углеродистая сталь – это металлургические композиции с низким содержанием добавок и высоким содержанием железа – до 99 ½ %. Этот материал высоко востребован в различных сферах промышленности, чем объясняется его высокая доля в производстве – до 80%. Сегодня разработано около 2 тысяч марок. Структура материала зависит от содержания в нем углерода. Изменяя процентное соотношение можно влиять на такие характеристики, как твердость, текучесть, пластичность и плотность. Критичным является показатель углерода в составе материала в 0,8%.

Относительно этого показателя УС различают:

  • если С менее 0,8%, в структуре материала присутствует феррит и перлит;
  • на уровне содержания С (углерода) в 0,8% для материала характерна перлитная структура;
  • при содержании С более 0,8% в структуре появляется цементит.

Общая тенденция с повышением содержания С выражается в повышении прочности, ударной вязкости и порога хладноломкости, но пластичность проката снижается.

Классификация углеродистых сталей

Кроме классификации по структурным параметрам,их принято различать по технологии получения:

  • электрические УС;
  • мартеновские;
  • кислородно-конвертерные.

По уровню раскисления подразделяют материал:

  • спокойный;
  • кипящий;
  • полуспокойный.

По качеству, в соответствии с наличием и объемам вредных примесей железный сплав бывает:

  • обычного качества;
  • качественные стали.

По сфере использования УС бывают:

  • обычные;
  • инструментальные;
  • конструкционные.

По наличию и объемам С в углеродистом железном сплаве материал классифицируют:

  • высокоуглеродистые стали марки с содержанием С более 0,65%;
  • среднеуглеродистые – от 0,25 до 0,6%;
  • низкоуглеродистые стали марки с содержанием С до 0,25%.

Чем выше показатели углерода, тем тверже и прочнее материал, но и выше его хрупкость. Маркировка материала напрямую связана с его назначением:

  • Обычного качества обозначают условным буквенным обозначением Ст. Далее следуют цифры от 1 до 7, которые показывают содержание С (углерода), кратное 10. Производства железных сплавов этой группы регламентирует ГОСТ380-85. Дополнительно эти материалы принято различать по группе поставок: А, Б и В. Это обозначение указывается перед маркой (группа А не указывается). Для А – стабильны механические свойства, для Б стабильны механический состав, для В стабильны свойства и состав.
  • Конструкционные УС регламентирует ГОСТ380-88, маркировка осуществляется цифрами: от 08 и до 85. Эти цифры информируют о содержании С (углерода) в материале в сотых долях %. Если железный сплав характеризуется увеличенным содержанием марганца, в конце маркировки указывается Г.
  • Инструментальные УС регламентирует ГОСТ1435-54 и 5952-51. Этот железный сплав относится к качественным, и маркируется буквой У. Далее следуют цифры, которые показывают объемы углерода в десятых долях %. Существует подгруппа высшего качества, в этом случае обозначение завершается буквой А. Им характерно повышенное содержание углерода.

В обозначении марки принято указывать степень раскисления: пс или кс.

Процент С в составе инструментальной стали обуславливается ее применение. У7 — для изготовления кузнечных молотов, штампов и зубил, У8 идет на изготовления инструментария для работы с камнем и металлом, У9 – оптимален для производства штемпелей и кернеров. Последующие модификации используют для выпуска полотен ножовок, сверл, плашек, резцов.

Отличие углеродистых сталей от легированных

Марки УС различают технологические процессы и использование различных добавок. Так чем отличаются углеродистые стали от легированных, если в эти железные сплавы также добавляются элементы, изменяющие механические, эксплуатационные и технологические параметры:

  • В состав углеродистых железных сплавов входят железо, углерод и нормальные примеси, которые бывают полезными и вредными. К первым относится марганец и кремний. Вредные примеси – это сера и фосфор.
  • В состав материала не входят легирующие добавки, которые изменяют свойства, такие как: молибден, титан, вольфрам и другие.
  • УС не предназначены для специального использования, это общепромышленный материал.
  • В сравнении с легированными материалами, углеродистые сплавы имеют более низкие технологические и эксплуатационные параметры, в том числе твердость и теплостойкость.

Область применения углеродистых сталей

Сфера применения УС определяется видом. Так, для холодной деформации и горячей ковки используется малоуглеродистая сталь, марки ее отличаются высокой пластичностью. Железные сплавы со средним содержанием углерода немногим отличаются по показателям текучести и пластичности, но его прочность уже выше. Они актуальны для производства элементов конструкций и механизмов, которые будут эксплуатироваться в обычных условиях. УС с высоким содержанием углерода обладают высокой прочностью, из них изготавливают различный инструмент и измерительные приборы. УС обычного качества используется на производстве листового материала, швеллеров, прутьев, балок и других изделий. Из нее выполняют элементы машин и металлические конструкции.

Обработка углеродистых сталей

Основными видами обработки УС являются: отжиг, закалка, нормализация, старение и отпуск.

  • Углеродистые стали обыкновенного качества. Сплав группы А поставляются для изделий, которые не подвергаются обработке. Группа Б – это материалы, которые предназначены для штамповки, ковке, а иногда и температурной обработке. Группа В – это сплавы, которые могут обрабатываться методом сварки.
  • Сталь углеродистая качественная. Этот материал можно подвергать химикотермической обработке, нормализации, холодной механической обработке, высадке, штамповке и обработке давлением. Особенности технологического процесса зависят от конкретной марки.

Одним из главных преимуществ этого железного сплава является его невысокая стоимость. Именно этот фактор обуславливает широкую применяемость материала.

, не содержащая легирующих компонентов. В зависимости от содержания углерода У. с. подразделяют на низкоуглеродистую (до 0,25% С), среднеуглеродистую (0,25-0,6% С) и высокоуглеродистую (более 0,6% С). Различают У. с. обыкновенного качества и качественную конструкционную. К 1-й группе относится горячекатаная (сортовая, фасонная, толстолистовая, тонколистовая, широкополосная) и холоднокатаная (тонколистовая) сталь; во 2-ю входят горячекатаные и кованые заготовки диаметром (или толщиной) до 250 мм, калиброванная сталь и Серебрянка .

У. с. выплавляют в мартеновских, двухванных, дуговых печах и кислородных конвертерах. Для раскисления У. с. используют ферромарганец, ферросилиций, феррованадий, алюминий, титан и др.; по степени раскисления различают кипящую, полуспокойную и спокойную У. с. Для улучшения физико-химических и технологических свойств применяют микролегирование У. с. титаном, цирконием, бором, редкоземельными элементами. В результате микролегирования сталь приобретает мелкозернистую структуру, уменьшается степень зональной ликвации (См. Ликвация), снижаются загрязнённость стали неметаллическими включениями (См. Неметаллические включения) и склонность к образованию трещин при горячей пластической деформации, повышается Ударная вязкость при отрицательных температурах, что даёт возможность применять У. с. в различных климатических зонах (от - 40 до 60 °С). У. с. разливают на слитки (сверху, сифоном) и заготовки (на машинах непрерывного литья); масса слитков достигает 35 т. Кроме того, У. с. используется для получения стальных отливок. Литая У. с. отличается от деформируемой стали подобного состава несколько меньшими пластичностью и ударной вязкостью.

У. с. - наиболее распространённый вид чёрных металлов (См. Чёрные металлы); на её долю приходится (середина 70-х гг.) свыше 75% всей стальной продукции чёрной металлургии СССР.

Лит.: Смоляренко Д. А., Качество углеродистой стали, 2 изд., М., 1969; Качество слитка спокойной стали, М., 1973.

Д. А. Смоляренко.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Углеродистая сталь" в других словарях:

    Нелегированная конструкционная или инструментальная сталь, содержащая С (0,04 2%) и постоянные примеси (Mn, Si, S, P). Различают низко (до 0,25% С), средне (0,25 0,6% С) и высокоуглеродистую (св. 0,6% С) сталь … Большой Энциклопедический словарь

    УГЛЕРОДИСТАЯ СТАЛЬ - см … Большая политехническая энциклопедия

    - (Carbon steel) сплав железа с углеродом (до 2 %). В отличие от легированных (сложных специальных сталей) не содержит специальных примесей. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

    углеродистая сталь - Все марки сталей, за исключением нержавеющих сталей. [Англо русский словарь по проектированию строительных конструкций. МНТКС, Москва, 2011] Тематики строительные конструкции EN carbon steel … Справочник технического переводчика

    углеродистая сталь - сталь, не содержащая специально введенных легирующих элементов (нелегированная сталь). Углеродистая сталь кроме основы Fe (97 99,5 %) и С (Энциклопедический словарь по металлургии

    Нелегированная конструкционная или инструментальная сталь, содержащая С (0,04 2%) и посторонние примеси (Mn, Si, S, Р). Различают низко (до 0,25% С), средне (0,25 0,6% С) и высокоуглеродистую (свыше 0,6% С) сталь. * * * УГЛЕРОДИСТАЯ СТАЛЬ… … Энциклопедический словарь

    углеродистая сталь - 3.15 углеродистая сталь (carbon steel): Сплав железа и углерода, содержащий до 0,8 % углерода и до 0,8 % марганца, а также остаточные количества других элементов, за исключением намеренно добавляемых в определенных количествах для раскисления… … Словарь-справочник терминов нормативно-технической документации

    Carbon steel Углеродистая сталь. Сталь, содержащая не более принимаемых за норму концентрации 1,65 % марганца, 0,60 % кремния и 0,60 % меди и только несущественное количество любых других элементов кроме углерода, кремния, марганца, меди, серы и… … Словарь металлургических терминов

    углеродистая сталь - anglinis plienas statusas T sritis chemija apibrėžtis Nelegiruotas plienas, kuriame be anglies yra gamybos metu patekusių Mn, Si, S ir P priemaišų. atitikmenys: angl. carbon steel; common steel; not alloyed steel rus. углеродистая сталь … Chemijos terminų aiškinamasis žodynas

    Углеродистая сталь - нелегированная сталь, содержащая, %: С 0,04 2 и постянные примеси (Мn до 1; Si до 0,4; S до0,07; Р до 0,09). Углеродистую сталь подразделяют: по содержанию на низкоуглеродистую (до0,25% С), среднеуглеродистую (0,25 0,6% С) и высокоуглеродистую… … Энциклопедический словарь по металлургии

Углеродистая сталь - сплав железа и углерода - занимает порядка 80% от всего объема металлоизделий. Материал отличается удовлетворительными механическими свойствами, относительно небольшими затратами на производство. Плотность стали (от 7,7 до 7,9)*103 кг/м3.

Сплав хорошо подвергается обработке давлением и резанием. Следует отметить, что материал превосходит в этих свойствах легированный сплав. Вместе с этим, углеродистая сталь менее технологична при В связи с высокой критической скоростью закалки, сплав охлаждается в воде. Это, в свою очередь, приводит к значительным короблениям и деформациям изделий. Чтобы обладала одинаковой с легированным сплавом прочностью, ее необходимо отпускать при температуре более низкой. В связи с этим, сохраняются более что снижает конструкционную прочность материала.

Углеродистая сталь бывает двух видов: качественная и обыкновенного качества.

Второй вид представлен прокатными изделиями: швеллерами, трубами, уголками, листами, балками, прутками и прочим. В углеродистой стали обычного качества допустимо содержание неметаллических включений, вредных примесей. Разрешена и некоторая степень газонасыщенности материала.

В соответствии с комплексом свойств и назначением углеродистые сплавы подразделяются на группы А, Б и В.

Первая группа (А) применяется при изготовлении деталей без использования горячей обработки. Таким образом, материал сохраняет механические свойства.

Стали из группы Б используют при производстве деталей с применением горячей обработки (например, прокатки, ковки, сварки). В этом случае механические свойства и исходная структура изменяются. Для этих деталей важной является информация о химическом составе. В зависимости от сведений будет определяться и режим горячей обработки.

Стали из группы В используются для изготовления сварных конструкций, ответственных деталей.

Следует отметить, что способ обработки металлического материала влияет на теплопроводность стали. Так, любое воздействие на изделие давлением повышает свойство проводить тепло к менее нагретой его части от более нагретого участка.

Углеродистые стали указанных трех групп обыкновенного качества предназначены для производства разных металлоконструкций, слабонагруженных приборов и деталей машин. Данный тип материала применим в тех случаях, когда работоспособность изделий обеспечивается за счет жесткости. Углеродистые обыкновенным качеством достаточно широко используются в строительной сфере при сооружении железобетонных конструкций. Отдельные сплавы групп В и Б хорошо подвергаются холодной обработке и свариванию. В связи с чем эти стали широко применяют при изготовлении рам, сварных ферм, строительных металлоконструкций, а также крепежных элементов, часть из которых подвергается впоследствии цементированию.

Стали подразделяют также на высоко-, средне- и низкоуглеродистые.

Последние характеризуются высокой пластичностью и малой прочностью в холодном состоянии. Как правило, эти изготавливают в виде тонкого листа. Углерод и кремний содержатся в них в малом количестве, вследствие чего эти сплавы отличаются мягкостью.

Стали среднеуглеродистые (номеров 4 и 3), отличаются большой прочностью. Эти сплавы применяют при производстве шестерен, валов, шкивов и прочих деталей сельскохозяйственной и грузовой техники, а также железнодорожных колес, рельсов и других изделий.

Стали высокоуглеродистые (номеров 6 и 5) и с высоким содержанием марганца используют в большинстве случаев при изготовлении высокопрочной проволоки, рессор, пружин и прочих деталей, от которых требуется высокая упругость и износостойкость.

По условиям выплавки в углеродистых сталях содержатся следующие примеси: углерод, кремний, марганец, сера, фосфор, кислород, водород и азот. Эти примеси называются постоянными (или неизбежными). На свойства углеродистых сталей решающее влияние оказывает углерод. Например, с повышением содержания углерода твердость и прочность стали повышаются, а пластичность и ударная вязкость снижаются. Некоторые марки полуспокойных ста­лей выплавляются с повышенным содержанием марганца.

В соответствии с ГОСТами выплавляются следующие основные виды углеродистых сталей: низкоуглеродистые (менее 0,3 % С), среднеуглеродистые (0,3–0,7 % С) и высокоуглеродистые (более 0,7 % С); по назначению: на конструкционные обыкновенного качества и качественные (в том числе – цементуемые, улучшаемые, высокопрочные и рессорно-пружинные), инструментальные для режущего и измерительного инструмента, а также штампов холодного (менее 200 °С) и горячего прессования.

Сталь углеродистая обыкновенного качества конструкционная выплавляется по ГОСТ 380–85 и поставляется потребителю в виде прутков, листов и других профилей проката. В зависимости от назначения и гарантируемых металлургическим заводом характеристик сталь подразделяется на три группы: А, Б, В, которые, в свою очередь, делятся на категории.

Сталь группы А поставляется по механичес­ким свойствам и изготовляется следующих марок: Ст0, Ст1 кп (сп), Ст2 кп (пс и сп), Ст3 кп (пс, гпс, гсп), Ст4 кп (пс), Ст5 пс, Ст6сп (пс).

Сталь группы Б поставляется по гарантированному химическому составу и изготовляется следующих марок: БСт0, БСт1, БСт2, БСт3, БСт4, БСт5, БСт6.

Сталь группы В поставляется по гарантированным механическим свойствам и химическому составу и изготовляется следующих марок: ВСт1, ВСт2, ВСт3, ВСт4, ВСт5.

Знание химического состава необходимо в том случае, когда сталь у потребителя подвергается горячей штамповке, а изготовленные из неё детали – термической обработке, поскольку температура нагрева выбирается в зависимости от содержания углерода в стали.

По степени раскисления сталь всех групп с номерами 1, 2, 3, 4 изготовляется кипящей, спокойной и полуспокойной, а с номерами 5 и 6 - только спокойной и полуспокойной. Стали Ст0 и БСт0 по степени раскисления не разделяются. Сталь марок ВСт1, ВСт2, ВСт3 всех степеней раскисления поставляется с гарантией свариваемости.

Расшифровка марок:

а) буквы Б и В перед буквами Ст – группа стали; группа А не указывается, например Ст3, БСт3, ВСт3;

б) буквы Ст – сталь, цифры, от 0 до 6 – условный номер марки; с повышением номера растет содержание углерода в стали и ее прочность. Например, в сталях Ст3 и Ст5 содержание углерода соответственно: 0,14–0,22 и 0,23–0,37 %; временное сопротивление σ В: 380–490 (38–49) и 560–640 (56–64) МПа (кгс/мм 2);

в) буквы, добавляемые после номера марки, – степень раскисления: кп – кипящая, пс – полуспокойная, сп – спокойная, например Ст3кп;

г) буква Г – повышенное содержание марганца (Ст3Гпс, ВСт3Гсп);

Область применения:

– ж.–д. колеса, валы, шкивы, шестерни;

– детали грузоподъемных машин;

– слабонагруженные детали машин и приборов;

– сварные фермы, различные рамы; железобетонные конструкции.

Сталь качественная конструкционная выплавляется по ГОСТ 1050–88, поставляется по химическому составу и механическим свойствам следующих марок: 08, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60. Марка означает среднее содержание (массовую долю) углерода в сотых долях процента. Помимо указанных, поставляются стали марок 05 и 58 (55 пп – сталь пониженной прокаливаемости).

По раскисленности выплавляются стали: кипящие (кп) – 05 кп, 08 кп, 10 кп, 15 кп, 20 кп; полуспокойные (пс) – 08 пс, 10 пс, 15 пс, 20 пс (листовая сталь для холодной штамповки); спокойные (сп) – 08, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 (индекс сп в марке не ставится).

По состоянию сталь изготовляется без термической обработки, термически обработанная Т (отожженная, высокоотпущенная или нормализованная) и нагартованная Н (калиброванная, серебрянка).

По назначению различают подгруппы стали: а – для горячей обработки давлением; б – для холодной механической обработки (обточки, фрезерования, строжки и т.д.); в - для холодного волочения.

Область применения:

– для холодной штамповки и глубокой вытяжки (0,5–20);

– вагоно- и автомобилестроение;

– слабонагруженные зубчатые колеса и кулачки;

– емкости, трубы, консервные банки.

Рессоры и пружины изготовляются из сталей, выплавляемых по ГОСТ 14959–79 (сталь рессорно-пружинная углеродистая и легированная). Углеродистая рессорно-пружинная сталь поставляется в виде прутков круглого, квадратного и профильного сечения, полос и мотков следующих марок: 65, 70, 75, 80 и 85.

Сталь инструментальная углеродистая выплавляется по ГОСТ 1435–90, поставляется по химическому составу и механическим свойствам (твердости). По химическому составу сталь делится на качественную и высококачественную. Качественные стали содержат вредные примеси серы не более 0,03 и фосфора 0,035 %. В высококачественных сталях – серы не более 0,02 % и фосфора 0,03 %, меньше чем в качественных сталях неметаллических включений, а также более сужены пределы содержания, кремния и марганца. Сталь поставляется в отожженном состоянии твердостью НВ 187–217. Твердость после закалки HRC 62.

Марки сталей: качественных – У7, У8, У9, У10, У11, У12, У13; высококачественных – У7А, У8А, У9А, У10А, У11А, У12А, У13А. Выпускаются также стали с повышенным содержанием марганца марок У8Г и У8ГА, в которых содержание марганца находится в пределах 0,35–0,60 %.

В обозначении марки буква У означает углеродистую инструментальную сталь, цифры - среднее массовое содержание углерода в десятых долях процента, буква А – сталь высококачественную, буква Г – повышенное содержание марганца.

Область применения:

– зубила, молотки, отвертки, центры токарных станков (У7, У7А);

– пуансоны, матрицы, ножницы, пилы (У8, У8А);

– керны, деревообрабатывающий инструмент (У9, У9А);

– резцы, метчики, развертки, фрезы (У10, У10А);

– штампы вырубные, пилы, пресс-формы (У11, У11А);

– резцы, сверла, фрезы, метчики (У12, У13,У13А).

Сталь автоматная выплавляется по ГОСТ 1414–75 следующих марок: А11, А12, А20, А30, А35Е, А40Г. Стали содержат вредные добавки серы 0,08–0,25 и фосфора 0,06–0,15 %. Для улучшения обрабатываемости резанием в стали вводят свинец (до 0,3 %), марганец (до 1,5 %) и селен (до 0,1 %) (АС14, АС35Г и А35Е).

Область применения:

– детали крепежа (болты, гайки);

– втулки, валики, детали двигателя.

Сталь литейная выплавляется по ГОСТ 977–79 следующих марок: 15Л, 20Л, …, 55Л.

Область применения:

– отливки мелких и крупных машиностроительных деталей;

– литые коленчатые валы;

– детали подвижного состава.

2.1.2 Легированные стали, их виды и марки

Легированные стали отличаются от углеродистых сталей:

– повышенной жаростойкостью, сопротивлением коррозии;

– значительной ударной вязкостью;

– высокими значениями σ т и γ;

– большим электросопротивлением;

– обладают лучшей прокаливаемостью;

– увеличивают количество остаточного аустенита.

В диаграмме состояния Fe –легирующий элемент Ni и Mn – расширяют область существования γ-фазы; Мо, Тi – сужают область существования γ-фазы; Si, Al, W, Sn, Mo и Ti – расширяют область α-фазы. Основными легирующими элементами в стали являются Cr, Ni, Si, Mn. Никель – увеличивает пластичность и вязкость стали; уменьшает температуру порога хладноломкости ; уменьшает чувствительность стали к концентрации напряжения. Хром увеличивает жаростойкость и коррозионную стойкость стали; увеличивает электрическое сопротивление; уменьшает коэффициент линейного расширения; увеличивает прокаливаемость стали; замедляет распад мартенсита. Кремний увеличивает жаростойкость стали ; затрудняет формирование и рост цементитных частиц; используется как раскислитель при плавке стали.

W, Mo, V, Ti, B – дополнительно улучшают свойства стали. Mo и W – увеличивают прокаливаемость стали (+ Ni); способствуют измельчению зерна; подавляют отпускную хрупкость стали.

V, Ti, Ni, Zr – образуют труднорастворимые в аустените карбиды; (до 0,15 %) измельчают зерна; снижают порог хладноломкости.

В – повышает прочность и прокаливаемость стали (0,001–0,005 %).

Эффективность легированных элементов достигается при их оптимальном содержании в стали.

легированные стали классифицируют:

По типу равновесной структуры;

Структуре после нормализации;

Химическому составу;

Назначению.

Легированные стали относят: к доэвтектоидным (феррит + легированный перлит); заэвтектоидным (легированный перлит + карбиды); эвтектоидным.

Разделяют стали на 3 основных класса:

– перлитный (сорбит, тростит и бейнит);

– мартенситный (в легированных);

– аустенитный (в высоколегированных).

Легированные стали делятся:

– по химическому составу : на хромистые; марганцовистые; хромоникелевые; хромоникельмолибденовые и т.д.;

– по общему количеству легирующих элементов в них : на низколегированные (до 2,5 %); легированные (2,5–10 %); высоколегированные (свыше 10 %);

– по назначению : на конструкционные (цементуемые, улучшаемые); инструментальные; с особыми свойствами («автоматные» пружинные, шарикоподшипниковые, износостойкие, коррозионностойкие, теплоустойчивые, жаропрочные, электротехнические и др. стали).

Маркировка легированных сталей: А – азот, Б – ниобий, В – вольфрам, Г – марганец, Д – медь, Е – селен, Т – титан, К – кобальт, Н – никель, М – молибден, П – фосфор, Р – бор, С – кремний, Ф – ванадий, Х – хром, Ц – цирконий, Ч – редкоземельные, Ю – алюминий.

Машиностроительные цементируемые улучшаемые стали содержат 0,1–0,3 % углерода и 0,24,4 % легирующих элементов. После насыщения углеродом, закалки и низкого отпуска детали из таких сталей имеют высокую поверхностную твердость (до 58–63 HRC ) при вязкой центральной части. Стали 15ХФ, 15Х, 20Х (с пределом текучести до 700 МПа) используют для изготовления небольших нагруженных деталей, испытывающих средние по величине знакопеременные и ударные нагрузки. Стали 12ХНЗА, 20ХНЗА, 20ХН4А (с пределом текучести более 700 МПа) используют для изготовления деталей средних и больших размеров, работающих в условиях интенсивного изнашивания, при повышенных нагрузках. Особо ответственные детали, например зубчатые колеса авиационных и судовых двигателей, изготавливают из сталей 18Х2Н4МА, 18Х2Н4ВА. Экономно легированные стали 18ХГТ, ЗОХГ, 25ХГТ имеют наследственную мелкозернистую структуру, что позволяет сократить технологический цикл обработки детали. Такие стали применяют для изготовления ответственных деталей крупносерийного и массового производства.

Машиностроительные улучшаемые легированные стали содержат 0,3–0,5 % углерода и до 5 % легирующих элементов. Используются преимущественно после улучшения (закалки и высокого отпуска при температуре 500600 °С на сорбит). Основное применение – ответственные детали машин, эксплуатируемые при воздействии циклических или ударных нагрузок. Для изготовления средненагруженных небольших деталей машин и механизмов без значительных динамических нагрузок применяют хромистые стали 30Х, 38Х, 40Х, 50Х. С увеличением содержа­ния углерода возрастает прочность этих сталей, но несколько снижается их вязкость и пластичность. Из хромоникелевых сталей 40ХН, 50ХН, а также из хромокремнемарганцевых сталей 30ХГСА, 35ХГСА, которые обладают высокими прочностными и вязкостными свойствами, изготавливают ответственные детали, работающие при воздействии динамических нагрузок.

Хромоникельмолибденовые стали 40ХНМА, 38ХМЗМА обладают повышенными механическими свойствами при температуре до 450 °С.

Мартенситостареющие высокопрочные стали (с пределом прочности 1800–2000 МПа) – безуглеродные (не более 0,03 % С) сплавы железа с никелем, легированные кобальтом, молибденом, титаном и другими элементами. Высокие механические свойства сталей HI8K9M5T, H12KI5M10 достигаются за счет совмещения мартенситного g ® a-превращения, старения мартенсита и легирования твердого раствора. Эти стали сохраняют высокие механические характеристики при низких температурах вплоть до температур сжиженных газов. Такие стали теплоустойчивы до температур 500700 °С. Находят применение для ответственных деталей в авиации, судостроении.

Износостойкие конструкционные стали обладают высоким сопротивлением контактной усталости и истиранию за счет высокой твердости, однородности структуры, минимального содержания неметаллических включений и металлургических дефектов. Термическая обработка (закалка и низкий отпуск) стали ШХ15ГС обеспечивает их твердость HRC 60–66. Для деталей, работающих в агрессивных средах (морской воде, слабых растворах кислот, щелочах), применяют коррозионностойкую высокоуглеродную сталь 95X18. Детали, эксплуатируемые при воздействии ударных нагрузок, вызывающих их поверхностный наклеп, а следовательно, снижение износостойкости обычных сталей, изготавливают из аустенитной высокомарганцовистой стали Г13Л. Для изготовления деталей, эксплуатируемых в условиях трения скольжения, применяют графитизированную сталь, имеющую структуру ферритно-цементитной смеси и графита. Последний играет роль смазочного материала, предотвращающего схватывание контактирующих деталей.

Коррозионно-стойкие стали и сплавы устойчивы к коррозии на воздухе, в воде (в т.ч. морской), в ряде кислот, солей и щелочей. Из хромистых сталей Х25Т, Х28, имеющих ферритную структуру, изготавливают детали, эксплуатируемые в высокоагрессивных средах, например в кипящей азотной кислоте. Хромоникелевые стали 04Х18Н10, 08Х18Н10, 12Х12Н10Т, имеющие аустенитную структуру, используют в авиа- и судостроении.

Жаропрочные стали и сплавы обеспечивают эксплуатацию деталей при температуре свыше 500 °С. Для деталей, эксплуатируемых в среде с температурой 500580 °С, используют низкоуглеродистые стали, имеющие структуру пластинчатого перлита, легированные кобальтом, молибденом, ванадием, в частности 16М, 25ХМ, 12Х1МФ. Нагруженные детали, эксплуатируемые в среде с температурой до 450-470 °С, изготавливают из высокохромистых сталей 15X11НМФ, 1ХКВНМФ, имеющих в зависимости от температуры отпуска структуру сорбита или троостита.

Углеродистые стали содержат в своем составе углерод до 2,14%, марганец (до 0,8%), кремний (до 0,35%), серу (до 0,06%) и фосфор (до 0,07%). Перечисленные элементы всегда присутствуют в стали, и поэтому их классифицируют как постоянные примеси . Марганец и кремний вводят в стали с целью раскисления, присутствие серы и фосфора объясняется трудностью удаления их при выплавке.

Кремний растворяется в феррите и сильно упрочняет его, снижая при этом пластичность и значительно повышая предел текучести. При этом уменьшается способность стали к вытяжке и холодной высадке. Поэтому в сталях, предназначенных для холодной штамповки, содержание кремния должно быть сниженным.

Марганец повышает прочность феррита и уменьшает красноломкость стали, которую вызывает сера. С железом сера образует сульфид FeS, который практически не растворяется в железе и образует с ним эвтектику (Fe + FeS), плавящуюся при температуре 988°С. При кристаллизации эта эвтектика размещается вокруг зерен в виде оторочек. Во время горячей обработки при нагреве выше 1000°С эвтектика плавится, что приводит к нарушению связи между зернами и в металле при деформации возникают надрывы и трещины. Это явление называется красноломкостью стали. При наличии марганца в стали вместо сульфида железа образуется сульфид марганца MnS с температурой плавления 1620°С, благодаря чему устраняется явление красноломкости.

Соединения серы снижают механические свойства, особенно ударную вязкость и пластичность, резко снижают работу развития вязкой трещины и вязкость разрушения К 1С . Сульфиды ухудшают свариваемость и коррозийную стойкость.

Фосфор в малых количествах растворяется в железе, образуя твердый раствор. Растворяясь в феррите, фосфор уменьшает его пластичность и вязкость и резко повышает порог хладноломкости стали. Каждая 0,01% фосфора повышает переходную температуру хладноломкости на 20...25 о С. При повышенном содержании фосфор с железом образует фосфиды Fe 3 Р и Fe 2 P, которые в составе эвтектики размещаются по границам зерен и снижают прочность стали.

Существуют в сталях так называемые скрытые примеси, к которым относят кислород 0,002...0,008%), азот (0,002...0,007%), водород (0,0001...0,0007%). Эти примеси могут находиться в стали в виде хрупких неметаллических включений (FeO, Al 2 O 3 , Fe 4 N) или твердого раствора, а также быть в свободном виде в дефектных участках металла (трещинах, раковинах и др.). При плавлении они растворяются в стали, а затем выделяются при охлаждении, главным образом, по границам зерен, что снижает сопротивление хрупкому разрушению. Кроме того, неметаллические включения есть концентраторами напряжений. Наличие водорода становится причиной возникновения в легированных сталях флокенов (микронесплошностей металла диаметром до 10…15 мм в центральной части поковки).

Неметаллические включения являются хрупкими и во время прокатки разбиваются, располагаясь в стали в виде цепочек. При этом образуются микроскопические концентраторы напряжений, что снижает характеристики усталости и ударную вязкость.

Некоторые примеси попадают в сталь при выплавке из скрапа и называются случайными . К таким примесям относятся хром, никель, медь при наличии до 0,3%. Влияние их в таком количестве на свойства сталей незначительно.

Наибольшее влияние на свойства стали имеет углерод. На рисунке 6 приведены кривые зависимости прочности и пластичности стали от содержания в ней углерода. Видно, что углерод очень резко повышает свойства прочности при одновременном снижении пластичности и вязкости. Это объясняется тем, что цементитные включения тормозят передвижение дислокаций в феррите и, естественно, при увеличении количества повышается их влияние.

При увеличении количества углерода переходная температура хладноломкости стали резко повышается. Каждая 0,1% С повышает на 20 о С температуру перехода от вязкого к хрупкому разрушению.

Углерод влияет также и на другие физические свойства стали, в частности, с повышением количества углерода увеличивается электросопротивление и коэрцитивная сила, а магнитная проницаемость уменьшается.

Углеродистые стали подразделяются по способу производства в зависимости от используемых плавильных агрегатов на конверторную, мартеновскую и электросталь. При этом по способу раскисления сталь может быть кипящей (раскислена только марганцем), полуспокойной (раскислена марганцем и кремнием) и спокойной (раскислена марганцем, кремнием и алюминием).

Рисунок 6 - Зависимость механических свойств стали (а) и

фазового состава (б) от содержания углерода

1.4.2.1 Классификация и маркировка углеродистых сталей

По структуре в равновесном состоянии различают доэвтектоидные, эвтектоидные и заэвтектоидные стали. Доэвтектоидные стали содержат углерода от 0,025 до 0,8%, их структура состоит из феррита и перлита. Содержание углерода в эвтектоидной стали составляет 0,8% С при полностью перлитной структуре. В заэвтектоидных сталях наряду с перлитной составляющей образуются цементитные включения, а содержание углерода может изменяться от 0,8 до 2,14%.

Наиболее распространена классификация углеродистых сталей по качеству, которое определяется содержанием серы и фосфора, В соответствии с этим признаком стали бывают обыкновенного качества, качественные и высококачественные.

Углеродистые стали обыкновенного качества (табл. 1) маркируются буквами Ст , что означает сталь. После Ст следует условный номер марки от 0 до 6, который отображает химический состав стали. Степень раскисления стали указывается буквами кп, пс, сп , которые означают, соответственно, кипящую (раскисленную марганцем), полуспокойную (раскисленную марганцем и кремнием), спокойную (раскисленную марганцем, кремнием и алюминием). Массовая доля серы в сталях всех марок £ 0,050%, фосфора – £ 0,040%, в Ст0 серы – £0,060%, фосфора – £ 0,070%.

Достаточно часто встречается еще маркировка прошлых лет, в соответствии с которой все стали обыкновенного качества подразделяются на три группы.

Группа А – маркируются Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст6.

Группа Б – маркируются буквами М, К, Б (что указывает на способ производства – мартеновский, конверторный, бессемеровский), а затем Ст0, Ст1, Ст2, Ст3, Ст4, Ст5,Ст6.

Группа В – маркируются ВСт1, ВСт2, ВСт3, ВСт4, ВСт5, ВСт6.

Стали группы А поставляются с гарантированными механическими свойствами. Они не поддаются горячей обработке. Чем больше номер, тем выше прочность, но ниже пластичность стали.

Стали группы Б поставляются с гарантированным химическим составом и у потребителя могут подвергаться горячей обработке (например, ковке и термической обработке).

Стали группы В поставляются с гарантированными механическими свойствами и химическим составом (применяются для сварных конструкций).

Таблица 1 - Химический состав углеродистых сталей обыкновенного

качества

Стали всех групп с номерами марок 1, 2, 3, 4 по степени раскисления изготавливают кипящими, полуспокойными, спокойными, а стали с номерами 5 и 6 – полуспокойными и спокойными.

Углеродистые качественные стали отличаются от сталей обыкновенного качества меньшим содержанием серы (не более 0,04%) и фосфора (не более 0,035%), а также меньшим количеством неметаллических включений. Химический состав этих сталей ограничивается более узким диапазоном. Качественные углеродистые стали маркируются словом сталь и последующим двузначным числом, которое показывает среднее содержание углерода в стали в сотых долях процента, например, 08, 10, 15 и т.д. (табл. 2).

Таблица 2 - Состав и механические свойства качественных углеродистых сталей

Марка стали С, % Mn,% Si, % Cr, % s 0,2 , МПа s в, МПа δ,% y, % KCU, Дж/см 2
0,05-0,12 0,35-0,65 0,17-0,37 0,10 -
0,07-0,14 0,35-0,65 0,17-0,37 0,15 -
0,12-0,19 0,35-0,65 0,17-0,37 0,25 -
0,17-0,24 0,35-0,65 0,17-0,37 0,25 -
0,22-0,30 0,50-0,80 0,17-0,37 0,25
0,27-0,35 0,50-0,80 0,17-0,37 0,5
0,32-0,40 0,50-0,80 0,17-0,37 0,25
0,37-0,45 0,50-0,80 0,17-0,37 0,25
0,42-0,50 0,50-0,80 0,17-0,37 0,25
0,47-0,55 0,50-0,80 0,17-0,37 0,25
0,52-0,60 0,50-0,80 0,17-0,37 0,25 -
0,57-0,65 0,50-0,80 0,17-0,37 0,25 -

При обозначении кипящей или полуспокойной стали в конце марки указывается степень раскисления буквами кп, пс . В случае спокойной стали степень раскисления не указывается. К качественным углеродистым сталям относятся также стали с повышенным содержанием марганца (0,7 - 1,0%). Такие стали имеют в конце марки букву Г .

Для изделий ответственного назначения применяют высококачественные стали с более низким содержанием серы (до 0,025%) и фосфора (до 0,025%). При обозначении высококачественных сталей в конце марки добавляется буква А.

Качественные углеродистые стали подразделяются на низко-, средне- и высокоуглеродистые в зависимости от содержания углерода. К низкоуглеродистым сталям высокой пластичности и малой прочности относятся стали 08, 08кп, 10, 10кп, 15, 15Г..., 25Г, которые используются для изготовления малонагруженных деталей (кулачковых валов, осей, втулок). Термическая обработка (закалка с отпуском, цементация) значительно повышает прочность и вязкость изделий из этих материалов, что позволяет создавать более легкие конструкции и экономить металл. Среднеуглеродистые стали (с содержанием углерода 0,3...0,55%) в зависимости от требуемых механических свойств используются после нормализации, закалки с высокотемпературным отпуском, закалки ТВЧ и низкотемпературного отпуска. Из этих сталей изготовляют валы, шестерни, шатуны, шпиндели и т.д.

Высокоуглеродистые стали содержат углерода от 0,6 до 0,85% и характеризуются высокими прочностными и упругими свойствами, повышенной износостойкостью. После закалки и отпуска или закалки с нагревом ТВЧ детали из этих сталей могут работать в условиях трения при наличии высоких статических и вибрационных нагрузок. Из этих сталей изготавливают канатную проволоку, а также пружинную проволоку после патентования.

Углеродистые стали, которые содержат 0,7...1,3%С, используются для изготовления ударного и режущего инструмента. Их маркируют У7...У13 , где У обозначает углеродистую сталь, а цифра – содержание углерода в десятых долях процента.

К положительным качествам углеродистых сталей относится их достаточно высокий комплекс механических свойств, который обеспечивается проведением термической обработки. Углеродистые стали имеют хорошие технологические свойства. Они недефицитны и дешевы.

Основным недостатком углеродистых сталей является их низкая прокаливаемость (до 15 мм).

Чугуны

1.4.3.1 Общие сведения

Чугунами называют сплавы железа с углеродом, количество которого превышает 2,14%. Значительная часть выплавляемого чугуна переплавляется в сталь, однако не менее чем 20% выплавляемого чугуна используют для изготовления литых деталей.

Чугуны отличаются высокими литейными свойствами и являются одними из основных современных литейных материалов. Около 75% всех отливок изготавливают из чугуна. Более низкая по сравнению со сталями температура плавления и завершение кристаллизации при постоянной температуре (образование эвтектики) обеспечивают более высокие литейные характеристики: жидкотекучесть и заполняемость формы, усадку и меньшую склонность к образованию усадочных трещин.

Из-за низкой пластичности чугуны не подвергаются обработке давлением.

В зависимости от химического состава и условий кристаллизации углерод в чугунах может находиться в химически связанном состоянии в виде цементита или в свободном состоянии в виде графита. В соответствии с этим различают белые чугуны (углерод находится в виде цементита) и серые (углерод находится в виде графитных включений).

В белых чугунах фазовые превращения происходят в соответствии с диаграммой Fe-Fe 3 C. В зависимости от содержания углерода они подразделяются на доэвтектические (2,14…4,3%С), эвтектические (4,3%С) и заэвтектические (4,3…6,67%С).

В доэвтектических чугунах структурными составляющими при комнатной температуре являются перлит, ледебурит и цементит; в эвтектических – ледебурит; в заэвтектических – ледебурит и цементит.

Белые чугуны имеют высокую твердость (450…550НВ и выше), обусловленную наличием в них большого количества цементита. Одновременно с высокой твердостью для белых чугунов характерна высокая хрупкость, что исключает их использование для изготовления деталей машин. Находят применение отливки из белых чугунов, которые служат для получения деталей из ковкого чугуна путем проведения графитизирующего отжига. Также находят применение отливки с поверхностным слоем (12…30 мм) из белого чугуна и сердцевиной из серого чугуна. Наличие «отбеленного» поверхностного слоя обеспечивает высокую изностойкость такой отливки.

Промышленное значение имеют серые чугуны, в которых углерод находится в виде графитных включений, и поэтому важное значение приобретают условия их образования, т. е. процесс графитизации.

Графит содержит 100% углерода, а концентрация углерода в цементите составляет всего 6,67%. Кристаллические структуры аустенита и графита существенно различаются, в то время, как кристаллические структуры аустенита и цементита более подобны по своему строению. Поэтому образование цементита из жидкой фазы и из аустенита должно протекать легче, чем графита, поскольку работа образования зародыша и необходимые для этого диффузионные процессы не столь значительны.

Однако смесь феррит + графит или аустенит + графит обладает меньшой свободной энергией, чем смесь феррит + цементит или аустенит + цементит , следовательно, термодинамические факторы способствуют образованию не цементита, а графита.

В силу перечисленных обстоятельств при быстром охлаждении и затруднении диффузионных процессов происходит образование цементита, а при медленном охлаждении определяющим является стремление к минимизации свободной энергии, что приводит к образованию графита.

Серые чугуны различаются по форме графитных включений. Графит, который образуется в чугунах в процессе кристаллизации и последующего охлаждения имеет пластинчатую форму, а чугуны с таким графитом называются собственно серыми .

Образование графита вследствие распада цементита имеет место не только при кристаллизации и охлаждении, но и при нагреве белого чугуна до высоких температур. Это явление используется при производстве так называемого ковкого чугуна. В этом случае центры графитизации растут более или менее равномерно во все стороны и образуются графитные включения хлопьевидной формы. Чугун с таким графитом называют ковким чугуном.

Чугун с шаровидной формой графита, которую получают вследствие модификации магнием и церием, называют высокопрочным чугуном.

Чугуны, так же как и стали, являются многокомпонентными сплавами, в состав которых входят Fe, C, Si, Mn, P и S.

Углерод оказывает определяющее значение на качество чугунов, изменяя литейные свойства и количество графитных включений. Чем выше его концентрация, тем больше выделений графита и ниже механические свойства чугуна, поэтому содержание углерода в промышленных чугунах не превышает 3,8%. Нижний предел содержания углерода составляет 2,4% и лимитируется необходимостью обеспечения достаточных литейных свойств.

Кремний обладает сильным графитизирующим действием, он способствует выделению графита в процессе затвердевания и разложению уже образовавшегося цементита. Содержание кремния в чугунах колеблется от 0,3 до 5%.

Марганец затрудняет протекание процессов графитизации и незначительно улучшает механические свойства чугунов. Количество марганца в чугунах может изменяться в пределах 0,5…1%.

Сера по своей отбеливающей способности в 5 - 6 раз превосходит марганец. Кроме этого, сера снижает жидкотекучесть, увеличивает усадку и повышает склонность к образованию трещин. Поэтому сера является вредной примесью и её содержание в чугунах не превышает 0,15%.

Фосфор практически не влияет на графитизацию. Его предельная растворимость в феррите составляет 0,3%. При большем содержании фосфор образует с железом и углеродом тройную фосфидную эвтектику с температурой плавления 950 о С, что увеличивает жидкотекучесть чугунов. Однако эта эвтектика имеет высокую твердость и хрупкость, поэтому повышенное содержание фосфора в отливках до 0,7% допускается лишь при необходимости обеспечения высокой изностойкости. Для художественного литья используются чугуны с содержанием фосфора до 1%.

Из легирующих элементов степень графитизации увеличивают никель и медь, а хром затрудняет процесс образования графита.

Графитные включения влияют на механические свойства отливок, поскольку могут рассматриваться как пустоты соответствующей формы, возле которых концентрируются напряжения. Величина этих напряжений тем больше, чем острее дефект, поэтому в наибольшей мере разупрочняется металл при наличии графитных включений пластинчатой формы, менее опасной является хлопьевидная форма графита, а наиболее приемлемой – шаровидная форма графита. Наибольшее влияние графитные включения оказывают на сопротивление материалов разрушению при жестких способах нагрузки (ударных и растягивающих) и практически не влияют при действии сжимающих нагрузок. Наименьшую пластичность имеют чугуны с пластинчатым графитом (δ = 0,2...0,5%), промежуточную (δ = 5...10%) – с хлопьевидным графитом и наибольшую – с шаровидным графитом (δ £ 15%).

По структуре металлической основы серые, ковкие и высокопрочные чугуны подразделяются на ферритные, ферритно-перлитные и перлитные.

Металлическая основа в чугуне обеспечивает наибольшую прочность и износостойкость, если она имеет перлитную структуру. Присутствие в структуре феррита, не увеличивая пластичность и вязкость чугуна, снижает его прочность и износостойкость. Наименьшей прочностью обладает серый ферритный чугун.

Как конструкционный материал чугуны обладают следующими положительными свойствами. Наличие графита улучшает обработку резанием, поскольку стружка ломается на графитных включениях. По сравнению со сталью чугуны имеют лучшие антифрикционные свойства, в силу того, что графитные включения сами являются смазкой. Чугун прекрасно гасит вибрации и имеет повышенную циклическую вязкость благодаря микропустотам, которые заполнены графитом. Детали из чугуна не столь чувствительны к внешним концентраторам напряжений (выточкам, отверстиям и т. п.) по сравнению со стальными деталями. Чугуны дешевле сталей из-за более простой технологии производства.