Стройка и ремонт - Информационный портал

Магнитометр. Виды и работа. Применение и особенности. Магнитометрия Отличие между моделями

Предлагаемый вашему вниманию дифференциальный магнитометр может быть очень полезен для поиска крупных железных предметов. Таким прибором практически невозможно искать клады, однако он незаменим при поиске неглубоко затонувших танков, кораблей и других образцов военной техники.

Принцип действия дифференциального магнитометра очень прост. Любой предмет из ферромагнетика искажает естественное магнитное поле Земли. К таким предметам относится все, изготовленное из железа, чугуна и стали. В значительной степени повлиять на искажение магнитного поля может и собственная намагниченность предметов, которая часто имеет место. Зафиксировав отклонение напряженности магнитного поля от фонового значения, можно сделать вывод о наличии вблизи измерительного прибора предмета из ферромагнитного материала.

Искажение магнитного поля Земли вдали от мишени мало, и оно оценивается по разности сигналов от двух разнесенных на некоторое расстояние датчиков. Поэтому прибор и назван дифференциальным. Каждый датчик измеряет сигнал, пропорциональный напряженности магнитного поля. Наибольшее распространение получили ферромагнитные датчики и датчики на основе магнетонной прецессии протонов. В рассматриваемом приборе используются датчики первого типа.

Основой ферромагнитного датчика (называемого также феррозондовым) является катушка с сердечником из ферромагнитного материала. Типовая кривая намагничивания такого материала хорошо известна из школьного курса физики и имеет с учетом влияния магнитного поля Земли следующий вид, показанный на рис. 29.

Рис. 29. Кривая намагничивания

Катушка возбуждается переменным синусоидальным сигналом несущей частоты. Как видно из рис. 29, смещение кривой намагничивания ферромагнитного сердечника катушки внешним магнитным полем Земли приводит к тому, что индукция поля и связанное с ним напряжение на катушке начинают искажаться несимметричным образом. Иными словами, напряжение датчика при синусоидальном токе несущей частоты будет отличаться от синусоиды более "приплюснутыми" верхушками полуволн. И искажения эти будут несимметричны. На языке спектрального анализа это означает появление в спектре выходного напряжения катушки четных гармоник, амплитуда которых пропорциональна напряженности магнитного поля смещения (поля Земли). Вот эти четные гармоники и надо "выловить".

Рис. 30. Дифференциальный ферромагнитный датчик

Прежде чем упомянуть естественным образом напрашивающийся для этой цели синхронный детектор, работающий с опорным сигналом удвоенной несущей частоты, рассмотрим конструкцию усложненного варианта ферромагнитного датчика. Он состоит из двух сердечников и трех катушек (рис. 30). По своей сути, это дифференциальный датчик. Однако для простоты далее в тексте не будем называть его дифференциальным, так как сам магнитометр и без того уже - дифференциальный (©).

Конструкция состоит из двух идентичных ферромагнитных сердечников с идентичными катушками, расположенными параллельно рядом друг с другом. По отношению к возбуждающему электрическому сигналу опорной частоты они включены встречно. Третья катушка представляет собой обмотку, намотанную поверх двух сложенных вместе первых двух катушек с сердечниками. При отсутствии внешнего смещающего магнитного поля электрические сигналы первой и второй обмоток симметричны и в идеальном случае действуют так, что выходной сигнал в третьей обмотке отсутствует, так как магнитные потоки через нее полностью компенсируются.

При наличии внешнего смещающего магнитного поля картина меняется. То один, то другой сердечник на пике соответствующей полуволны "залетает" в насыщение глубже, чем обычно вследствие добавочного воздействия магнитного поля Земли. В результате на выходе третьей обмотки появляется сигнал рассогласования удвоенной частоты. Сигналы основной гармоники в идеале там полностью компенсируются.

Удобство рассмотренного датчика заключается в том, что его катушки можно включить для повышения чувствительности в колебательные контура. Первую и вторую -в колебательный контур (или контура), настроенный на несущую частоту. Третью - в колебательный контур, настроенный на вторую гармонику.

Описанный датчик обладает ярко выраженной диаграммой направленности. Его выходной сигнал максимален при расположении продольной оси датчика вдоль силовых линий внешнего постоянного магнитного поля. Когда продольная ось перпендикулярна силовым линиям - выходной сигнал равен нулю.

Датчик рассмотренного типа, особенно совместно с синхронным детектором, может успешно работать как электронный компас. Его выходной сигнал после выпрямления пропорционален проекции вектора напряженности магнитного поля Земли на ось датчика. Синхронное детектирование позволяет узнать и знак этой проекции. Но даже и без знака - сориентировав датчик по минимуму сигнала, получим направление на запад или на восток. Сориентировав по максимуму - получим направление магнитной силовой линии поля Земли. В средних широтах (например, в Москве) она идет наклонно и "втыкается" в землю в направлении на север. По углу магнитного склонения можно приблизительно оценить географическую широту местности.

Дифференциальные ферромагнитные магнитометры имеют свои достоинства и недостатки. К достоинствам относится простота прибора, он не сложнее радиоприемника прямого усиления. К недостаткам относится трудоемкость изготовления датчиков - кроме аккуратности требуется абсолютно точное совпадение количества витков соответствующих обмоток. Погрешность один-два витка может сильно снизить возможную чувствительность. Другим недостатком является "компасность" прибора, т. е. невозможность полной компенсации поля Земли вычитанием сигналов от двух разнесенных датчиков. На практике это приводит к ложным сигналам при поворотах датчика вокруг оси, перпендикулярной продольной.

Практическая конструкция

Практическая конструкция дифференциального ферромагнитного магнитометра была реализована и испытана в макетном варианте без специальной электронной части для звуковой индикации, с использованием только микроамперметра с нулем посередине шкалы. Схема звуковой индикации может быть взята из описания металлоискателя по принципу "передача-прием". Прибор имеет следующие параметры.

Основные технические характеристики
Напряжение питания 15... 18 В
Потребляемый ток не более 50 мА
Глубина обнаружения:
пистолет 2 м
пушечный ствол 4 м
танк 6 м

Структурная схема

Рис. 31. Структурная схема дифференциального ферромагнитного магнитометра

Структурная схема показана на рис. 31. Стабилизированный кварцем задающий генератор выдает синхроимпульсы тактовой частоты для формирователя сигналов.

На одном его выходе присутствует меандр первой гармоники, поступающий на усилитель мощности, возбуждающий излучающие катушки датчиков 1 и 2. Другой выход формирует меандр опорной удвоенной тактовой частоты со сдвигом 90° для синхронного детектора. Разностный сигнал с выходных (третьих) обмоток датчиков усиливается в приемном усилителе и выпрямляется синхронным детектором. Выпрямленный постоянный сигнал можно регистрировать микроамперметром или описанными в предыдущих главах устройствами звуковой индикации.

Принципиальная схема

Принципиальная схема дифференциального ферромагнитного магнитометра изображена на рис. 32 - часть 1; задающий генератор, формирователь сигналов, усилитель мощности и излучающие катушки, рис. 33 - часть 2: приемные катушки, приемный усилитель, синхронный детектор, индикатор и блок питания.

Рис. 32. Принципиальная электрическая схема - часть I
ЗАДАЮЩИЙ ГЕНЕРАТОР (РИС. 32)

Задающий генератор собран на инверторах D1.1-D1.3. Частота генератора стабилизирована кварцевым или пье-зокерамическим резонатором Q с резонансной частотой 215 Гц = 32 кГц ("часовой кварц"). Цепь R1C1 препятствует возбуждению генератора на высших гармониках. Через резистор R2 замыкается цепь ООС, через резонатор Q -цепь ПОС. Генератор отличается простотой, малым потребляемым током, надежно работает при напряжении питания 3...15 В, не содержит подстроечных элементов и чересчур высокоомных резисторов. Выходная частота генератора - около 32 кГц.

ФОРМИРОВАТЕЛЬ СИГНАЛОВ (РИС. 32)

Формирователь сигналов собран на двоичном счетчике D2 и D-триггере D3.1. Тип двоичного счетчика непринципиален, главная его задача - поделить тактовую частоту на 2, на 4 и на 8, получив таким образом, меандры с частотами 16, 8 и 4 кГц соответственно. Несущая частота для возбуждения излучающих катушек-4 кГц. Сигналы с частотами 16 и 8 кГц, воздействуя на D-триггер D3.1, формируют на его выходе меандр удвоенной по отношению к несущей частоты 8 кГц, сдвинутый на 90° относительно выходного сигнала 8 кГц двоичного счетчика. Такой сдвиг необходим для нормальной работы синхронного детектора, так как такой же сдвиг имеет полезный сигнал рассогласования удвоенной частоты на выходе датчика. Вторая половинка микросхемы из двух D-триггеров - D3.2 в схеме не используется, но ее незадействованные входы должны обязательно быть подключены либо к логической 1, либо к логическому 0 для нормальной работы, что и изображено на схеме.

УСИЛИТЕЛЬ МОЩНОСТИ (РИС. 32)

Усилитель мощности с виду таким и не кажется и представляет всего лишь мощные инверторы D1.4 и D1.5, которые в противофазе раскачивают колебательный контур, состоящий из последовательно-параллельно включенных излучающих катушек датчика и конденсатора С2. Звездочка около номинала конденсатора означает, что его значение указано ориентировочно и что его надо подобрать при наладке. Незадействованный инвертор D1.6, чтобы не оставлять его вход неподключенным, инвертирует сигнал D1.5, но практически работает "вхолостую". Резисторы R3 и R4 ограничивают выходной ток инверторов на допустимом уровне и вместе с колебательным контуром образуют высокодобротный полосовой фильтр, благодаря чему форма напряжения и тока в излучающих катушках датчика практически совпадает с синусоидальной.

Рис. 33. Принципиальная электрическая схема - часть II. Приемный усилитель
ПРИЕМНЫЙ УСИЛИТЕЛЬ (РИС 33)

Приемный усилитель усиливает разностный сигнал, поступающий с приемных катушек датчика, образующих совместно с конденсатором СЗ колебательный контур, настроенный на удвоенную частоту 8 кГц. Благодаря подстроечно-му резистору R5 вычитание сигналов приемных катушек производится с некоторыми взвешивающими коэффициентами, которые могут изменяться перемещением движка резистора R5. Этим достигается компенсация неидентичностей параметров приемных обмоток датчика и минимизация его "компасности". Приемный усилитель двухкаскадный. Он собран на ОУ D4.2 и D6.1 с параллельной ОС по напряжению. Конденсатор С4 уменьшает усиление на высших частотах, предотвращая тем самым перегрузку усилительного тракта высокочастотными наводками от силовых сетей и других источников. Цепи коррекции ОУ - стандартные.

СИНХРОННЫЙ ДЕТЕКТОР (РИС. 33)

Синхронный детектор выполнен на ОУ D6.2 по типовой схеме. В качестве аналоговых ключей используется микросхема D5 КМОП мультиплексора-демультиплексора 8 на 1 (рис. 32). Его цифровой адресный сигнал перебирается только в младшем разряде, обеспечивая поочередную коммутацию точек К1 и К2 на общую шину. Выпрямленный сигнал фильтруется конденсатором С8 и усиливается ОУ D6.2 с одновременным дополнительным ослаблением не-отфильтрованных ВЧ составляющих цепями R14C11 и R13C9. Цепь коррекции ОУ - стандартная для использованного типа.

ИНДИКАТОР (РИС. 33)

Индикатор представляет собой микроамперметр с нулем посередине шкалы. В индикаторной части может с успехом использоваться схемотехника описанных ранее металлоискателей других типов. В том числе, в качестве индикатора можно использовать и конструктив металлоискателя по принципу электронного частотомера. В этом случае его LC-генератор заменяется на RC-генератор, а измеряемое выходное напряжение через резистивный делитель подается на частотозадающую цепь таймера. Подробнее об этом можно почитать на сайте Юрия Колоколова.

Микросхема D7 стабилизирует однополярное напряжение питания. С помощью ОУ D4.1 создается искусственная средняя точка питания, что позволяет использовать обычную двуполярную схемотехнику для ОУ. Керамические блокирующие конденсаторы С18-С21 смонтированы в непосредственной близости от корпусов цифровых микросхем D1, D2, D3, D5.

Типы деталей и конструкция

Типы использованных микросхем указаны в табл. 6.

Таблица 6. Типы использованных микросхем

Вместо микросхем серии К561 возможно использование микросхем серии К1561. Можно попытаться применить некоторые микросхемы серии К176 или зарубежные аналоги серий 40ХХ и 40ХХХ.

Сдвоенные операционные усилители (ОУ) серии К157 можно заменить любыми сходными по параметрам ОУ общего назначения (с соответствующими изменениями в цоколевке и цепях коррекции).

К применяемым в схеме дифференциального магнитометра резисторам не предъявляется особых требований. Они лишь должны иметь прочную и миниатюрную конструкцию и быть удобны для монтажа. Номинал рассеиваемой мощности 0,125...0,25 Вт.

Потенциометры R5, R16 желательны многооборотные для удобства точной настройки прибора. Рукоятка потенциометра R5 должна быть изготовлена из пластика и должна иметь достаточную длину, чтобы прикосновения руки оператора при настройке не вызывали изменения показаний индикатора за счет наводок. Конденсатор С16 - электролитический любого малогабаритного типа.

Конденсаторы колебательных контуров С2* и СЗ* состоят из нескольких (5-10 шт.) конденсаторов, включенных параллельно. Настройка контура в резонанс осуществляется подбором количества конденсаторов и их номинала. Рекомендуемый тип конденсаторов К10-43, К71-7 или зарубежные термостабильные аналоги. Можно попытаться использовать обычные керамические или металлопленоч-ные конденсаторы, однако, при колебаниях температуры придется чаще подстраивать прибор.

Микроамперметр - любого типа на ток 100 мкА с нулем посередине шкалы. Удобны малогабаритные микроамперметры, например, типа М4247. Можно использовать практически любой микроамперметр, и даже миллиамперметр - с любым пределом шкалы. Для этого надо соответствующим образом скорректировать номиналы резисторов R15-R17. Кварцевый резонатор Q - любой малогабаритный часовой кварц (аналогичные используются также в портативных электронных играх).

Выключатель S1 - любого типа, малогабаритный.

Рис. 34. Конструкция датчика-антенны

Катушки датчика выполнены на круглых ферритовых сердечниках диаметром 8 мм (используются в магнитных антеннах радиоприемников СВ- и ДВ-диапазонов) и длиной около 10 см. Каждая обмотка состоит из ровно и плотно намотанных в два слоя 200 витков медного обмоточного провода диаметром 0,31 мм в двойной лаково-шелковой изоляции. Поверх всех обмоток крепится слой фольги экрана. Края экрана изолируются друг от друга для предотвращения образования короткозамкнутого витка. Вывод экрана выполняется медным луженым одножильным проводом. В случае экрана из алюминиевой фольги этот вывод накладывается на экран на всю его длину и плотно приматывается изолентой. В случае экрана из медной или латунной фольги вывод припаивается.

Концы ферритовых сердечников закреплены во фторопластовых центрирующих дисках, благодаря которым каждая из двух половинок датчика удерживается внутри пластиковой трубы из текстолита, служащей корпусом, как это схематически изображено на рис. 34. Длина трубы - около 60 см. Каждая из половинок датчика расположена у конца трубы и дополнительно фиксируется силиконовым гермети-ком, которым заполняется пространство вокруг обмоток и их сердечников. Заполнение осуществляется через специальные отверстия в корпусе-трубе. Совместно с фторопластовыми шайбами такой герметик придает креплению хрупких ферритовых стержней необходимую упругость, препятствующую их растрескиванию при случайных ударах.

Налаживание прибора

1. Убедиться в правильности монтажа.

2. Проконтролировать потребляемый ток, который не должен превышать 100 мА.

3. Проверить правильность работы задающего генератора и остальных элементов формирования импульсных сигналов.

4. Настроить колебательные контура датчика. Излучающий - на частоту 4 кГц, приемный - на 8 кГц.

5. Убедиться в правильности работы усилительного тракта и синхронного детектора.

Работа с прибором

Методика настройки и работы с прибором следующая. Выходим в место поисков, включаем прибор и начинаем вращать антенну-датчик. Лучше всего в вертикальной плоскости, проходящей через направление север-юг. Если датчик прибора на штанге, то можно не вращать, а раскачивать насколько это позволяет делать штанга. Стрелка индикатора будет отклоняться (компасный эффект). С помощью переменного резистора R5 пытаемся минимизировать амплитуду этих отклонений. При этом будет "съезжать" средняя точка показаний микроамперметра и ее надо будет тоже подстраивать другим переменным резистором R16, который предназначен для установки нуля. Когда "компасный" эффект станет минимальным, прибор считается отбалансированным.

Для малых объектов методика поисков с помощью дифференциального магнитометра не отличается от методики работы с обычным металлоискателем. Возле объекта стрелка может отклониться в любую сторону. Для больших объектов стрелка индикатора будет отклоняться в разные стороны на большом пространстве.

Наиболее известный вид магниторазведочной аппаратуры – магнитометр . Его модифицированная разновидность – градиентометр . Принципы измерения магнитного поля в этих приборах одинаковы – они могут быть протонные, феррозондовые, квантовые и т.д, различны лишь конструктивные решения, которые позволяют решать несколько разные задачи.

Рис.1. Трёхмерное магнитное поле древнего города.

Рассмотрим наиболее широко применяющиеся виды магнитометров. В первую очередь это, конечно, протонные, феррозондовые и квантовые магнитометры. Все они обладают определёнными преимуществами и недостатками. Есть, конечно, ещё криогенные магнитометры, магнитометры на эффекте Холла, индукционные. Но пешеходные магнитометры, представляющие интерес для археологических изысканий, это, конечно, протонные, феррозондовые и в меньшей степени квантовые. Рассмотрим их сравнительных характеристики.

Казалось бы, основная характеристика магнитометра – чувствительность. Однако это не совсем так. Например, криогенные магнитометры легко достигают чувствительности 0,0001 нТл, но они настолько неудобны, громоздки и капризны, что их не применяют даже в аэроварианте (хотя попытки были).

Квантовые магнитометры также вполне способны показать точность 0,01 нТл, но имеют весьма строгие ограничения по ориентации датчиков. Их уже много лет успешно используют при аэромагнитных съёмках.

Феррозондовые магнитометры , обладая весьма высокой точностью измерений и способностью выдавать не дискретные, как квантовый и протонный магнитометры, а непрерывнй сигнал, чувствительны к изменениям температуры, что доставляет конструкторам определённые хлопоты со «сползанием нуля» прибора.

Протонные магнитометры , будучи менее чувствительны, оказались очень неплохими в смысле стабильности, малой подверженности температурным изменениям и к ориентации по сторонам света (хотя последняя всё-таки присутствует). К недостаткам протонных следует отнести дискретность измерений, требующую остановки на каждой точке, громоздкость и большой вес датчиков, а также невозможность измерений в сильных полях.

Ещё о чувствительности. Если вы видите в паспорте прибора чувствительность 0,1 нТл, то это совершенно не значит, что вы сможете обнаружить аномалию величиной хотя бы 1 нТл! Во-первых, на эту 0,1 нТл накладывается температурный дрейф нуля прибора (несколько нТл). Во-вторых, влияние пространственной ориентации прибора – ещё 2-4 нТл. Ну, и, естественно, уже знакомые нам вариации геомагнитного поля.

Словом, как показывает многолетняя практика, выделить в процессе стандартной площадной пешеходной съёмки аномалию амплитудой менее 3-7 нТл невозможно. При маршрутной же съёмке (когда поисковик идёт по какому-то маршруту, часто по пересечённой местности), стараясь выделить аномалию по текущим показаниям прибора, аномалию даже в 10-20 нТл поймать весьма сложно. Так что при поиске можно спокойно переключать чувствительность на своём приборе с 0,1 на 1 нТл и приступать к работе, не утомляя себя разглядыванием десятых долей на дисплее.

Ещё важная характеристика магнитометра – способ регистрации. Если информация выводится только на табло в цифровом виде и (или) на магнитный носитель, то, конечно же, это прибор, предназначенный для площадных съёмочных работ. Эти работы достаточно сложны, требуют материальных и временных затрат, а результат, представляемый в виде карт магнитного поля участка, выдаётся только спустя определённое время.

Поисковый прибор должен иметь световую (изменяющаяся шкала) и звуковую индикацию. Это позволяет оперативно, по ходу полевых исследований, видеть аномалию, отыскивать её центр и сразу принимать решение на предмет её перспективности. Самый распространённый поисковый прибор – ручной металлодетектор, но его глубинность оставляет желать много лучшего, хотя другие характеристики (дискриминация, точность обнаружения цели и др.) доведены производителями до высокого уровня.

Требованиям более мощного глубинного поискового прибора отвечают магнитометры-градиентометры . Являясь, по сути, двумя магнитометрами, объединёнными в единый прибор, градиентометр даёт владельцу информацию не о численном значении поля в точке измерения, а о разнице поля между двумя точками пространства – о градиенте. Поскольку градиент поля Земли, геологических структур и временных вариаций исчезающее мал, градиентометр его игнорирует. А вот градиент от результатов человеческой деятельности, напротив, велик. Поле от небольших предметов человеческой деятельности невелико, но затухает настолько быстро, что это затухание (градиент) легко фиксируется градиентометром без предварительного построения карт магнитного поля. Уловит этот перепад и обычный магнитометр, но для этого оператору придётся на каждой точке производить не один, а два замера – внизу, на уровне земли, и выше на 1-2 метра, что, конечно же, неудобно. Но для правильного измерения поля магнитометром в необходимо останавливаться на каждой точке, и это уже неудобно вдвойне.

Магнитометр предназначен для измерения индукции магнитного поля. В магнитометре используется опорное магнитное поле, которое позволяет посредством тех или иных физических эффектов преобразовать измеряемое магнитное поле в электрический сигнал .
Прикладное применение магнитометров для обнаружения массивных объектов из ферромагнитных (чаще всего, стальных) материалов основано на локальном искажении этими объектами магнитного поля Земли. Преимуществом использования магнитометров в сравнении с традиционными металлодетекторами состоит в большей дальности обнаружения .

Феррозондовые (векторные) магнитометры

Одним из видов магнитометров являются . Феррозонд был изобретен Фридрихом Фёрстером ()

В 1937 году и служит для определения вектора индукции магнитного поля .

Конструкция феррозонда

одностержневой феррозонд

Простейший феррозонд состоит из пермаллоевого стержня, на котором размещена катушка возбуждения ((drive coil ), питаемая переменным током, и измерительная катушка (detector coil ).

Пермаллой - сплав с магнитно-мягкими свойствами, состоящий из железа и 45-82 % никеля. Пермаллой обладает высокой магнитной проницаемостью (максимальная относительная магнитная проницаемость ~100 000) и малой коэрцитивной силой. Популярной маркой пермаллоя для изготовления феррозондов является 80НХС - 80 % никеля + хром и кремний с индукцией насыщения 0,65-0,75 Тл, применяется для сердечников малогабаритных трансформаторов, дросселей и реле, работающих в слабых полях магнитных экранов, для сердечников импульсных трансформаторов, магнитных усилителей и бесконтактных реле, для сердечников магнитных головок.
Зависимость относительной магнитной проницаемости от напряженности поля для некоторых сортов пермаллоя имеет вид -

Если на сердечник накладывается постоянное магнитное поле, то в измерительной катушке появляется напряжение четных гармоник, величина которого служит мерой напряженности постоянного магнитного поля. Это напряжение отфильтровывается и измеряется.

двухстержневой феррозонд

В качестве примера можно привести устройство, описанное в книге Каралиса В.Н. "Электронные схемы в промышленности" -



Прибор предназначен для измерения постоянных магнитных полей в диапазоне 0,001 ... 0,5 эрстед.
Обмотки возбуждения датчика L1 и L3 включены встречно. Измерительная обмотка L2 намотана поверх обмоток возбуждения. Обмотки возбуждения питаются током частоты 2 кГц от двухтактного генератора с индуктивной обратной связью. Режим генератора стабилизируется по постоянному току делителем на резисторах R8 и R9 .

феррозонд с тороидальным сердечником
Одним из популярных вариантов конструкции феррозондового магнитометра является феррозонд с тороидальным сердечником (ring core fluxgate ) -

По сравнению со стержневыми феррозондами такая конструкция имеет меньшие шумы и требует создания намного меньшей магнитодвижущей силы .

Этот датчик представляет собой обмотку возбуждения , намотанную на тороидальном сердечнике, по которой протекает переменный ток с амплитудой, достаточной для ввода сердечника в насыщение, и измерительную обмотку , с которой снимается переменное напряжение, которое и анализируется для измерения внешнего магнитного поля.
Измерительная обмотка наматывается поверх тороидального сердечника, охватывая его целиком (например, на специальном каркасе) -


Эта конструкция аналогична первоначальной конструкции феррозондов (конденсатор добавлен для достижения резонанса на второй гармонике) -

Применение протонных магнитометров
Протонные магнитометры широко используются в археологических исследованиях.
Протонный магнитометр упоминается в научно-фантастической новелле Майкла Крайтона "В ловушке времени" ("Timeline ") -
He pointed down past his feet. Three heavy yellow housings were clamped to the front struts of the helicopter. "Right now we’re carrying stereo terrain mappers, infrared, UV, and side-scan radar.” Kramer pointed out the rear window, toward a six-foot-long silver tube that dangled beneath the helicopter at the rear. “And what’s that?” “Proton magnetometer.” “Uh-huh. And it does what?” “Looks for magnetic anomalies in the ground below us that could indicate buried walls, or ceramics, or metal.”


Цезиевые магнитометры

Разновидностью квантовых магнитометров являются атомные магнитометры на щелочных металлах с оптической накачкой.

цезиевый магнитометр G-858

Магнитометры Оверхаузера

Твердотельные магнитометры

Наиболее доступными являются магнитометры, встроенные в смартфоны. Для Android хорошим приложением, использующим магнитометр, является . Страничка этого приложения - http://physics-toolbox-magnetometer.android.informer.com/ .

Настройка магнитометров

Для тестирования феррозонда можно использовать . Катушки Гельмгольца используются для получения практически однородного магнитного поля. В идеальном случае они представляют собой два одинаковых кольцевых витка, соединенных между собой последовательно и расположенных на расстоянии радиуса витка друг от друга. Обычно катушки Гельмгольца состоят из двух катушек, на которых намотано некоторое количество витков, причем толщина катушки должна быть много меньше их радиуса. В реальных системах толщина катушек может быть сравнима с их радиусом. Таким образом, можно считать системой колец Гельмгольца две соосно расположенных одинаковых катушки, расстояние между центрами которых приблизительно равно их среднему радиусу. Такую систему катушек называют также расщепленный соленоид (split solenoid).

В центре системы имеется зона однородного магнитного поля (магнитное поле в центре системы в объеме 1/3 радиуса колец однородно в пределах 1% ), что может быть использовано для измерительных целей, для калибровки датчиков магнитной индукции и т. д.

Магнитная индукция в центре системы определяется как $B = \mu _0\,{\left({4\over 5}\right) }^{3/2} \, {IN\over R}$,
где $N$ – число витков в каждой катушке, $I$ – ток через катушки, $R$ – средний радиус катушки.

Также катушки Гельмгольца могут быть использованы для экранирования магнитного поля Земли. Для этого лучше всего использовать три взаимно перпендикулярные пары колец, тогда не имеет значения их ориентация.