Стройка и ремонт - Информационный портал

Теория ошибок. Обработка результатов измерений в физическом практикуме измерения и погрешности измерений Как проводится обработка результатов измерений в физике

Оценка погрешностей результатов измерений

Погрешности измерений и их типы

Любые измерения всегда производятся с какими-то погрешностями, связанными с ограниченной точностью измерительных приборов, неправильным выбором, и погрешностью метода измерений, физиологией экспериментатора, особенностями измеряемых объектов, изменением условий измерения и т. д. Поэтому в задачу измерения входит нахождение не только самой величины, но и погрешности измерения, т. е. интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Например, при измерении отрезка времени t секундомером с ценой деления 0,2 с можно сказать, что истинное значение его находится в интервале от https://pandia.ru/text/77/496/images/image002_131.gif" width="85" height="23 src=">с..gif" width="16" height="17 src="> и X – соответственно истинное и измеренное значения исследуемой величины. Величина называется абсолютной погрешностью (ошибкой) измерения, а выражение , характеризующее точность измерения, называется относительной погрешностью.

Вполне естественно стремление экспериментатора произвести всякое измерение с наибольшей достижимой точностью, однако такой подход не всегда целесообразен. Чем точнее мы хотим измерить ту ил иную величину, тем сложнее приборы мы должны использовать, тем больше времени потребуют эти измерения. Поэтому точность окончательного результата должна соответствовать цели проводимого эксперимента. Теория погрешностей дает рекомендации, как следует вести измерения и как обрабатывать результаты, чтобы величина погрешности была минимальной.

Все возникающие при измерениях погрешности обычно разделяют на три типа – систематические, случайные и промахи, или грубые ошибки.

Систематические погрешности обусловлены ограниченной точностью изготовления приборов (приборные погрешности), недостатками выбранного метода измерений, неточностью расчетной формулы, неправильной установкой прибора и т. д. Таким образом, систематические погрешности вызываются факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений. Величина этой погрешности систематически повторяется либо изменяется по определенному закону. Некоторые систематические ошибки могут быть исключены (на практике этого всегда легко добиться) путем изменения метода измерений, введение поправок к показаниям приборов, учета постоянного влияния внешних факторов.

Хотя систематическая (приборная) погрешность при повторных измерениях дает отклонение измеряемой величины от истинного значения в одну сторону, мы никогда не знаем в какую именно. Поэтому приборная погрешность записывается с двойным знаком

Случайные погрешности вызываются большим числом случайных причин (изменением температуры, давления, сотрясения здания и т. д.), действия которых на каждое измерение различно и не может быть заранее учтено. Случайные погрешности происходят также из-за несовершенства органов чувств экспериментатора. К случайным погрешностям относятся и погрешности обусловленные свойствами измеряемого объекта.

Исключить случайны погрешности отдельных измерений невозможно, но можно уменьшить влияние этих погрешностей на окончательный результат путем проведения многократных измерений. Если случайная погрешность окажется значительно меньше приборной (систематической), то нет смысла дальше уменьшать величину случайной погрешности за счет увеличения числа измерений. Если же случайная погрешность больше приборной, то число измерений следует увеличить, чтобы уменьшить значение случайной погрешности и сделать ее меньше или одного порядка с погрешностью прибора.

Промахи, или грубые ошибки, - это неправильные отсчеты по прибору, неправильная запись отсчета и т. п. Как правило, промахи, обусловленные указанными причинами хорошо заметны, так как соответствующие им отсчеты резко отличаются от других отсчетов. Промахи должны быть устранены путем контрольных измерений. Таким образом, ширину интервала в котором лежат истинные значения измеряемых величин, будут определять только случайные и систематические погрешности.

2. Оценка систематической (приборной) погрешности

При прямых измерениях значение измеряемой величины отсчитывается непосредственно по шкале измерительного прибора. Ошибка в отсчете может достигать нескольких десятых долей деления шкалы. Обычно при таких измерениях величину систематической погрешности считают равной половине цены деления шкалы измерительного прибора. Например, при измерении штангенциркулем с ценой деления 0,05 мм величина приборной погрешности измерения принимают равной 0,025 мм.

Цифровые измерительные приборы дают значение измеряемых ими величин с погрешностью, равной значению одной единицы последнего разряда на шкале прибора. Так, если цифровой вольтметр показывает значение20,45 мВ, то абсолютная погрешность при измерении равна мВ.

Систематические погрешности возникают и при использовании постоянных величин, определяемых из таблиц. В подобных случаях погрешность принимается равной половине последнего значащего разряда. Например, если в таблице значение плотности стали дается величиной, равной 7,9∙103 кг/м3, то абсолютная погрешность в этом случае равна https://pandia.ru/text/77/496/images/image009_52.gif" width="123" height="24 src=">используется формула

, (1)

где https://pandia.ru/text/77/496/images/image012_40.gif" width="16" height="24">, - частные производные функции по переменной https://pandia.ru/text/77/496/images/image014_34.gif" width="65 height=44" height="44">.

Частные производные по переменным d и h будут равны

Https://pandia.ru/text/77/496/images/image017_27.gif" width="71" height="44 src=">.

Таким образом, формула для определения абсолютной систематической погрешности при измерении объема цилиндра в соответствии с имеет следующий вид

,

где и приборные ошибки при измерении диаметра и высоты цилиндра

3. Оценка случайной погрешности.

Доверительный интервал и доверительная вероятность

https://pandia.ru/text/77/496/images/image016_30.gif" width="12 height=23" height="23">.gif" width="45" height="21 src="> - функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки , σ – средняя квадратичная ошибка.

Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.

Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле

, (3)

где https://pandia.ru/text/77/496/images/image027_14.gif" width="15" height="17">- среднее арифметическое полученных значений; n – число измерений.

Чем больше число измерений, тем меньше https://pandia.ru/text/77/496/images/image027_14.gif" width="15" height="17 src=">, а случайная абсолютная погрешность , то результат измерений запишется в виде https://pandia.ru/text/77/496/images/image029_11.gif" width="45" height="19"> до , в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку https://pandia.ru/text/77/496/images/image025_16.gif" width="19 height=24" height="24"> близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ , используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины , называемой коэффициентом Стьюдента , дает значение доверительного интервала в долях средней квадратичной ошибки среднего арифметического .

Распределение вероятностей этой величины не зависит от σ2, а существенно зависит от числа опытов n. С увеличением числа опытов n распределение Стьюдента стремится к распределению Гаусса.

Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n , и столбца, соответствующего доверительной вероятности α

Таблица 1.

Пользуясь данными таблицы, можно:

1) определить доверительный интервал, задаваясь определенной вероятностью;

2) выбрать доверительный интервал и определить доверительную вероятность.

При косвенных измерениях среднюю квадратичную ошибку среднего арифметического значения функции вычисляют по формуле

. (5)

Доверительный интервал и доверительная вероятность определяются так же, как и в случае прямых измерений.

Оценка суммарной погрешности измерений. Запись окончательного результата.

Суммарную погрешность результата измерений величины Х будем определять как среднее квадратичное значение систематической и случайной погрешностей

, (6)

где δх – приборная погрешность, Δх – случайная погрешность.

В качестве Х может быть как непосредственно, так и косвенно измеряемая величина.

, α=…, Е=… (7)

Следует иметь в виду, что сами формулы теории ошибок справедливы для большого число измерений. Поэтому значение случайной, а следовательно, и суммарной погрешности определяется при малом n с большой ошибкой. При вычислении Δх при числе измерений рекомендуется ограничиваться одной значащей цифрой, если она больше 3 и двумя, если первая значащая цифра меньше 3. Например, если Δх = 0,042, то отбрасываем 2 и пишем Δх =0,04, а если Δх =0,123, то пишем Δх =0,12.

Число разрядов результата и суммарной погрешности должно быть одинаковым. Поэтому среднее арифметическое погрешности должно быть одинаковым. Поэтому среднее арифметическое вычисляется вначале на один разряд больше, чем измерение, а при записи результата его значение уточняется до числа разрядов суммарной ошибки.

4. Методика расчета погрешностей измерений.

Погрешности прямых измерений

При обработке результатов прямых измерений рекомендуется принять следующий порядок выполнение операций.

Проводятся измерения заданного физического параметра n раз в одинаковых условиях, и результаты записываются в таблицу. Если результаты некоторых измерений резко отличаются по своему значению от остальных измерений, то они как промахи отбрасываются, если после проверки не подтверждаются. Вычисляется среднее арифметическое из n одинаковых измерений. Оно принимается за наиболее вероятное значение измеряемой величины

Находятся абсолютные погрешности отдельных измерений Вычисляются квадраты абсолютных погрешностей отдельных измерений (Δх i)2 Определяется средняя квадратичная ошибка среднего арифметического

.

Задается значение доверительной вероятности α. В лабораториях практикума принято задавать α=0,95. Находится коэффициент Стьюдента для заданной доверительной вероятности α и числа произведенных измерений (см. табл.) Определяется случайная погрешность

Определяется суммарная погрешность

Оценивается относительная погрешность результата измерений

.

Записывается окончательный результат в виде

С α=… Е=…%.

5. Погрешность косвенных измерений

При оценке истинного значения косвенно измеряемой величины https://pandia.ru/text/77/496/images/image045_6.gif" width="75" height="24">, можно использовать два способа.

Первый способ используется, если величина y определяется при различных условиях опыта. В этом случае для каждого из значений вычисляется , а затем определяется среднее арифметическое из всех значений yi

Систематическая (приборная) погрешность находится на основании известных приборных погрешностей всех измерений по формуле. Случайная погрешность в этом случае определяется как ошибка прямого измерения.

Второй способ применяется, если данная функция y определяется несколько раз при одних и тех же измерений..gif" width="75" height="24">. В нашем лабораторном практикуме чаще используется второй способ определения косвенно измеряемой величины y. Систематическая (приборная) погрешность, как и при первом способе, находится на основании известных приборных погрешностей всех измерений по формуле

. (10)

Для нахождения случайной погрешности косвенного измерения вначале рассчитываются средние квадратичные ошибки среднего арифметического отдельных измерений. Затем находится средняя квадратичная ошибка величины y. Задание доверительной вероятности α, нахождение коэффициента Стьюдента https://pandia.ru/text/77/496/images/image048_2.gif" width="83" height="23">, с α=… Е=…%.

6. Пример оформления лабораторной работы

Лабораторная работа №1

ОПРЕДЕЛЕНИЕ ОБЪЕМА ЦИЛИНДРА

Принадлежности: штангенциркуль с ценой деления 0,05 мм, микрометр с ценой деления 0,01 мм, цилиндрическое тело.

Цель работы: ознакомление с простейшими физическими измерениями, определение объема цилиндра, расчет погрешностей прямых и косвенных измерений.

Провести не менее 5 раз измерения штангенциркулем диаметра цилиндра, а микрометром его высоту.

Расчетная формула для вычисления объема цилиндра

где d – диаметр цилиндра; h – высота.

Результаты измерений

Таблица 2.

№ измерения

5.4. Вычисление суммарной погрешности

Абсолютная погрешность

; .

5. Относительная погрешность, или точность измерений

; Е = 0,5%.

6. Запись окончательного результата

Окончательный результат для исследуемой величины записывается в виде

Примечание. В окончательной записи число разрядов результата и абсолютной погрешности должно быть одинаковым.

6. Графическое представление результатов измерений

Результаты физических измерений очень часто представляют в графической форме. Графики обладают рядом важных преимуществ и ценных свойств:

а) дают возможность определить вид функциональной зависимости и пределы, в которых она справедлива;

б) позволяют наглядно проводить сравнение экспериментальных данных с теоретической кривой;

в) при построении графика сглаживают скачки в ходе функции, возникающие за счет случайных ошибок;

г) дают возможность определять некоторые величины или проводить графическое дифференцирование , интегрирование, решение уравнения и др.

Графики, как правило, выполняются на специальной бумаге (миллиметровой, логарифмической, полулогарифмической). Принято по горизонтальной оси откладывать независимую переменную, т. е. величину, значение которой задает сам экспериментатор, а по вертикальной оси – ту величину, которую он при этом определяет. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями x и у. При выборе начала координат следует руководствоваться тем, чтобы полностью использовалась вся площадь чертежа (рис.2.).

На координатах осях графика указываются не только названия или символы величин, но и единицы их измерения. Масштаб по осям координат следует выбирать так, чтобы измеряемые точки располагались по всей площади листа. При этом масштаб должен быть простым, чтобы при нанесении точек на график не производить арифметических подсчетов в уме.

Экспериментальные точки на графике должны изображаться точно и ясно. Точки, полученные при различных условиях эксперимента (например, при нагревании и охлаждении), полезно наносить разными цветами или разными значками. Если известна погрешность эксперимента, то вместо точки лучше изображать крест или прямоугольник, размеры которого по осям соответствуют этой погрешности. Не рекомендуется соединять экспериментальные точки между собой ломаной линией. Кривую на графике следует проводить плавно, следя за тем, чтобы экспериментальные точки располагались как выше, так и ниже кривой, как показано на рис.3.

При построении графиков помимо системы координат с равномерным масштабом применяют так называемые функциональные масштабы. Подобрав подходящие функции x и y, можно на графике получить более простую линию, чем при обычном построении. Часто это бывает нужно при подборе к данному графику формулы для определения его параметров. Функциональные масштабы применяют также в тех случаях, когда на графике нужно растянуть или сократить какой-либо участок кривой. Чаще всего из функциональных масштабов используют логарифмический масштаб (рис.4).

Основные положения методов обработки результатов прямых измерений с многократными наблюдениями определены в ГОСТ 8.207-76.

За результат измерения принимают среднее арифмети-ческое данных n наблюдений, из которых исключены систематичес-кие погрешности. При этом предполагается, что результаты наблю-дений после исключения из них систематических погрешностей принадлежат нормальному распределению. Для вычисления резуль-тата измерения следует из каждого наблюдения исключить система-тическую погрешность и получить в итоге исправленный результат i –го наблюдения. Затем вычисляется среднее арифметическое этих исправленных результатов, которое принимается за результат измерения. Среднее арифметическое является состоятельной, несмещенной и эффективной оценкой измеряемой величины при нормальном распределении данных наблюдений.

Следует отметить, что иногда в литературе вместо термина результат наблюдения иногда применяют термин результат отдельного измерения , из которого исключены систематические погрешности. При этом за результат измерения в данной серии из нескольких измерений понимают среднее арифметическое значение. Это не меняет сути излагаемых ниже процедур обработки результатов.

При статистической обработке групп результатов наблюдений следует выполнять следующие операции :

1. Исключить из каждого наблюдения известную систематическую погрешность и получить исправленный результат отдельного наблюдения x .

2. Вычислить среднее арифметическое исправленных результатов наблюдений, принимаемое за результат измерения:

3. Вычислить оценку среднего квадратического отклонения

группы наблюдений:

Проверить наличие грубых погрешностей – нет ли значений , которые выходят за пределы ±3S . При нормальном законе распределений с вероятностью, практически равной 1 (0,997), ни одно из значений этой разности не должно выйти за указанные пределы. Если они имеются, то следует исключить из рассмотрения соответствующие значения и заново повторить вычисления и оценку S.

4. Вычислить оценку СКО результата измерения (среднего

арифметического)

5. Проверить гипотезу о нормальности распределения результатов наблюдений.

Существуют различные приближенные методы проверки нормальности распределения результатов наблюдений. Некоторые из них приведены в ГОСТ 8.207-76. При числе наблюдений меньше 15 в соответствии с этим ГОСТ принадлежность их к нормальному распределению не проверяют. Доверительные границы случайной погрешности определяют лишь в том случае, если заранее известно, что результаты наблюдений принадлежат этому распределению. Приближенно о характере распределения можно судить, построив гистограмму результатов наблюдений. Математические методы проверки нормальности распределения рассматриваются в специальной литературе.


6. Вычислить доверительные границы e случайной погрешности (случайной составляющей погрешности) результата измерения

где t q - коэффициент Стьюдента, зависящий от числа наблюдений и доверительной вероятности. Например, при n = 14, P = 0,95 t q = 2,16. Значения этого коэффициента приведены в приложении к указанному стандарту.

7. Вычислить границы суммарной неисключенной систематической погрешности (НСП) результата измерений Q (по формулам раздела 4.6).

8. Проанализировать соотношение Q и :

Если , то НСП по сравнению со случайными погрешностя-ми пренебрегают, и граница погрешности результата D = e.. Если > 8, то случайной погрешностью можно пренебречь и граница погрешности результата D = Θ. Если оба неравенства не выполняются, то границу погрешности результата находят путем построения композиции распределений случайных погрешностей и НСП по формуле: , где К – коэффициент, зависящий от соотношения случайной погрешности и НСП; S å - оценка суммарного СКО результата измерения. Оценку суммарного СКО вычисляют по формуле:

.

Коэффициент К вычисляют по эмпирической формуле:

.

Доверительная вероятность для вычисления и должна быть одной и той же.

Погрешность от применения последней формулы для композиции равномерного (для НСП) и нормального (для случайной погрешности) распределений достигает 12 % при доверительной вероятности 0,99.

9. Записать результат измерений. Написание результата измерений предусмотрено в двух вариантах, так как следует различать измерения, когда получение значения измеряемой величины является конечной целью, и измерения, результаты которых будут использоваться для дальнейших вычислений или анализа.

В первом случае достаточно знать общую погрешность результата измерения и при симметричной доверительной погреш-ности результаты измерений представляют в форме: , где

где – результат измерения.

Во втором случае должны быть известны характеристики составляющих погрешности измерения – оценка среднего квадратического отклонения результата измерения , границы НСП , число выполненных наблюдений . При отсутствии данных о виде функций распределения составляющих погрешности результата и необходимости дальнейшей обработки результатов или анализа погрешностей, результаты измерений представляют в форме:

Если границы НСП вычислены в соответствии с п.4.6, то дополнительно указывают доверительную вероятность Р.

Оценки , и производные от их величины могут быть выражены как в абсолютной форме, то есть в единицах измеряемой величины, так и относительной, то есть как отношение абсолютного значения данной величины к результату измерения. При этом вычисления по формулам настоящего раздела следует проводить с использованием величин, выраженных только в абсолютной или в относительной форме.

Порядок обработки результатов прямых измерений

1. Перед обработкой результатов измерений крайне важно задать значение доверительной вероятности α (обычно 0,9 или 0,95).

2. Проанализировать таблицу записи результатов и выявить возможные промахи. Результаты, содержащие промахи, следует отбросить.

3. Вычислить среднее арифметическое значение серии измерений:

где n – число измерений, A i – результат i -го измерения.

4. Найти погрешности отдельных измерений:

ΔА i = А i – ‹А›. (2)

5. Вычислить среднеквадратичную погрешность среднего арифметического результата серии измерений:

(3)

6. Оценить вклад случайных погрешностей в полуширину доверительного интервала:

ΔА с = t (n, α)S (A ), (4)

где t (n, α) – коэффициент Стьюдента (таблица 1).

Таблица 1 - Коэффициент Стьюдента при различных значениях доверительной вероятности α и различном количестве опытов n

α Количество опытов, n
0,9 6,3 2,9 2,4 2,1 2,0 1,9 1,9 1,9 1,8 1,8 1,8 1,7 1,7 1,7 1,7
0,95 12,7 4,3 3,2 2,8 2,6 2,4 2,4 2,3 2,3 2,2 2,2 2,1 2,1 2,0 2,0
0,99 63,7 9,9 5,8 4,6 4,0 3,7 3,5 3,4 3,3 3,2 3,1 2,9 2,8 2,8 2,7

7. Определить погрешность прибора ΔА пр (абсолютная погрешность прибора указана в паспорте прибора или рассчитывается на основании класса точности прибора).

8. Найти полуширину доверительного интервала (абсолютную погрешность) измеряемой величины по приближенной формуле:

(5)

(Более точные формулы для обработки результатов прямых измерений приведена, к примеру, в ).

9. Записать результат измерений в виде доверительного интервала:

А= (‹A› ± ΔА ) ед.изм., α = … (6)

10. Определить относительную погрешность:

(7)

Порядок обработки результатов прямых измерений - понятие и виды. Классификация и особенности категории "Порядок обработки результатов прямых измерений" 2017, 2018.

Физика - наука экспериментальная, это означает, что физические законы устанавливаются и проверяются путем накопления и сопоставления экспериментальных данных. Цель физического практикума заключается в том, чтобы студенты изучили на опыте основные физические явления, научились правильно измерять числовые значения физических величин и сопоставлять их с теоретическими формулами.

Все измерения можно разделить на два вида – прямые и косвенные .

При прямых измерениях значение искомой величины непосредственно получается по показаниям измерительного прибора. Так, например, длина измеряется линейкой, время по часам и т. д.

Если искомая физическая величина не может быть измерена непосредственно прибором, а посредством формулы выражается через измеряемые величины, то такие измерения называются косвенными .

Измерение любой величины не дает абсолютно точного значения этой величины. Каждое измерение всегда содержит некоторую погрешность (ошибку). Ошибкой называют разность между измеренным и истинным значением.

Ошибки принято делить на систематические и случайные .

Систематической называют ошибку, которая остается постоянной на протяжении всей серии измерений. Такие погрешности обусловлены несовершенством измерительного инструмента (например, смещением нуля прибора) или методом измерений и могут быть, в принципе, исключены из конечного результата введением соответствующей поправки.

К систематическим ошибкам относятся также погрешность измерительных приборов. Точность любого прибора ограничена и характеризуется его классом точности, который, как правило, обозначен на измерительной шкале.

Случайной называется ошибка, которая изменяется в разных опытах и может быть и положительной и отрицательной. Случайные ошибки обусловлены причинами, зависящими как от измерительного устройства, (трение, зазоры, и т. п..), так и от внешних условий (вибрации, колебания напряжения в сети и т.п.).

Случайные ошибки нельзя исключить опытным путем, но их влияние на результат можно уменьшить многократными измерениями.

Вычисление погрешности при прямых измерениях среднее значение и средняя абсолютная ошибка.

Предположим, что мы проводим серию измерений величины Х. Из-за наличия случайных ошибок, получаем n различных значений:

Х 1 , Х 2 , Х 3 … Х n

В качестве результата измерений обычно принимают среднее значение

Разность между средним значением и результатом i – го измерения назовем абсолютной ошибкой этого измерения

В качестве меры ошибки среднего значения можно принять среднее значение абсолютной ошибки отдельного измерения

(2)

Величина
называется средней арифметической (или средней абсолютной) ошибкой.

Тогда результат измерений следует записать в виде

(3)

Для характеристики точности измерений служит относительная ошибка, которую принято выражать в процентах

(4)

В общем случае порядок обработки результатов прямых измерений следующий (предполагается, что систематических ошибок нет).

Случай 1. Число измерений меньше пяти.

x , определяемый как среднее арифметическое от результатов всех измерений, т.е.

2) По формуле (12) вычисляются абсолютные погрешности отдельных измерений

3) По формуле (14) определяется средняя абсолютная погрешность

.

4) По формуле (15) вычисляют среднюю относительную погрешность результата измерений

5) Записывают окончательный результат по следующей форме:

Случай 2 . Число измерений свыше пяти.

1) По формуле (6) находится средний результат

2) По формуле (12) определяются абсолютные погрешности отдельных измерений

3) По формуле (7) вычисляется средняя квадратическая погрешность единичного измерения

.

4) Вычисляется среднее квадратическое отклонение для среднего значения измеряемой величины по формуле (9).

5) Записывается окончательный результат по следующей форме

Иногда случайные погрешности измерений могут оказаться меньше той величины, которую в состоянии зарегистрировать измерительный прибор (инструмент). В этом случае при любом числе измерений получается один и тот же результат. В подобных случаях в качестве средней абсолютной погрешности принимают половину цены деления шкалы прибора (инструмента). Эту величину иногда называют предельной или приборной погрешностью и обозначают (для нониусных приборов и секундомера равна точности прибора).

Оценка достоверности результатов измерений

В любом эксперименте число измерений физической величины всегда по тем или иным причинам ограничено. В связи с этим может быть поставлена задача оценить достоверность полученного результата. Иными словами, определить, с какой вероятностью можно утверждать, что допущенная при этом оши­бка не превосходит наперед заданную величину ε. Упомянутую вероятность принято называть доверительной вероятностью. Обозначим её буквой .

Может быть поставлена и обратная задача: определить границы интервала , чтобы с заданной вероятностью можно было утверждать, что истинное значение измерений величины не выйдет за пределы указанного, так называемого доверительного интервала.

Доверительный интервал характеризует точность полученного результата, а доверительная вероятность - его надёжность. Методы решения этих двух групп задач имеются и особенно подробно разработаны для случая, когда погрешности измерений распределены по нормальному закону. Теория ве­роятностей даёт также методы для определения числа опытов (повторных измерений), при которых обеспечивается заданная точность и надёжность ожидаемого результата. В данной работе эти методы не рассматриваются (ограничимся только их упоминанием), так как при выполнении лабораторных работ подобные задачи обычно не ставятся.



Особый интерес, однако, представляет случай оценки достоверности результата измерений физических величин при весьма малом числе повторных измерений. Например, . Это именно тот случай, с которым мы часто встречаемся при выполнении лабораторных работ по физике. При решении указанного рода задач рекомендуется использовать метод, в основе которого лежит распределение (закон) Стьюдента.

Для удобства практического применения рассматриваемого метода имеются таблицы, с помощью которых можно определить доверительный интервал , соответствующий заданной доверительной вероятности или решить обратную задачу.

Ниже приведены те части упомянутых таблиц, которые могут потребоваться при оценке результатов измерений на лабораторных занятиях.

Пусть, например, произведено равноточных (в одинаковых условиях) измерений некоторой физической величины и вычислено её среднее значение . Требуется найти доверительный интервал , соответствующий заданной доверительной вероятности . Задача в общем виде решается так.

По формуле с учётом (7) вычисляют

Затем для заданных значений n и находят по таблице (табл. 2) величину . Искомое значение вычисляется на основе формулы

При решении обратной задачи вначале вычисляют по формуле (16) параметр . Искомое значение доверительной вероятности берётся из таблицы (табл. 3) для заданного числа и вычисленного параметра .

Таблица 2. Значение параметра при заданных числе опытов

и доверительной вероятности

n 0,5 0,6 0,7 0,8 0,9 0,95 0.98 0,99 0.995 0,999
1,000 1,376 1,963 3,08 6,31 12,71 31,8 63,7 127,3 637,2
0,816 1,061 1,336 1,886 2,91 4,30 6,96 9,92 14,1 31,6
0,765 0,978 1,250 1,638 2,35 3,18 4,54 5,84 7,5 12,94
0,741 0,941 1,190 1,533 2,13 2,77 3,75 4,60 5,6 8,61
0,727 0,920 1,156 1,476 2,02 2,57 3,36 4,03 4,77 6,86
0.718 0,906 1,134 1,440 1,943 2,45 3,14 3,71 4,32 5,96
0,711 0,896 1,119 1,415 1,895 2,36 3,00 3,50 4,03 5,40
0,706 0,889 1,108 1,397 1,860 2,31 2,90 3,36 3,83 5,04
0,703 0,883 1,110 1,383 1,833 2,26 2,82 3,25 3,69 4,78

Таблица 3 Значение доверительной вероятности при заданном числе опытов n и параметре ε

n 2,5 3,5
0,705 0,758 0,795 0,823
0,816 0,870 0,905 0,928
0,861 0,912 0,942 0,961
0,884 0,933 0,960 0,975
б 0,898 0,946 0,970 0,983
0,908 0,953 0,976 0,987
0,914 0,959 0,980 0,990
0,919 0.963 0,983 0,992
0,923 0,969 0,985 0,993

Обработка результатов косвенных измерений

Очень редко содержание лабораторной работы или научного эксперимента сводится к получению результата прямого измерения. Большей частью искомая величина является функцией нескольких других величин.

Задача обработки опытов при косвенных измерениях заключается в том, чтобы на основании результатов прямых измерений некоторых величин (аргументов), связанных с искомой величиной определённой функциональной зависимостью, вычислить наиболее вероятное значение искомой величины и оценить погрешность косвенных измерений.

Существует несколько способов обработки косвенных измерений. Рассмотрим следующие два способа.

Пусть по методу косвенных измерений определяется некоторая физическая величина.

Результаты прямых измерений ее аргументов х, у, z приведены в табл. 4.

Таблица 4

Номер опыта x y z
n

Первый способ обработки результатов заключается в следующем. С помощью расчетной (17) формулы вычисляют искомую величину по результатам каждого опыта

(17)

Описанный способ обработки результатов применим, в принципе, во всех без исключения случаях косвенных измерений. Однако наиболее целесообразно применять его тогда, когда число повторных измерений аргументов небольшое, а расчётная формула косвенно измеряемой величины сравнительно проста.

При втором способе обработки результатов опытов вначале вычисляют, используя результаты прямых измерений (табл. 4), средние арифметические значения каждого из аргументов, а также погрешности их измерения. Подставив , , ,... в расчетную формулу (17), определяют наиболее вероятное значе­ние измеряемой величины

(17*)